Recent applications in nanoliquid chromatography.

Since its first introduction by Karlsson and Novotny in 1988 nano-LC has emerged as a complementary and/or competitive separation method to conventional HPLC, offering several advantages such as higher efficiency, ability to work with minute sample sizes and lower consumption of mobile phases, and better compatibility with MS, etc. Although its use was not so extended initially, in the last years new and interesting applications have appeared which deserve to be carefully considered. The aim of this review is therefore to provide an updated and critical survey of different nano-LC applications in analytical chemistry.

[1]  R. Swart,et al.  Swelling behaviour and kinetic performance of polyacrylate stationary phases for reversed-phase and normal-phase open-tubular liquid chromatography , 1996 .

[2]  S. Fanali,et al.  Synthesis and evaluation of polymeric continuous bed (monolithic) reversed-phase gradient stationary phases for capillary liquid chromatography and capillary electrochromatography. , 2007, Journal of biochemical and biophysical methods.

[3]  J. Jorgenson,et al.  Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system. , 1995, Analytical chemistry.

[4]  L. Blomberg,et al.  Controlling the retention in capillary LC with solvents, temperature, and electric fields. , 2004, Journal of Separation Science.

[5]  V. Schurig,et al.  Enantiomer separation by capillary electrochromatography on a cyclodextrin‐modified monolith , 2000, Electrophoresis.

[6]  S. Fanali,et al.  Separation of tocopherols by nano-liquid chromatography. , 2004, Journal of pharmaceutical and biomedical analysis.

[7]  J. Jorgenson,et al.  In-Depth Characterization of Slurry Packed Capillary Columns with 1.0-μm Nonporous Particles Using Reversed-Phase Isocratic Ultrahigh-Pressure Liquid Chromatography , 2004 .

[8]  D. Barofsky,et al.  An exponential dilution gradient system for nanoscale liquid chromatography in combination with MALDI or Nano-ESI mass spectrometry for proteolytic digests , 2001, Journal of the American Society for Mass Spectrometry.

[9]  G. Desmet,et al.  Performance limits of monolithic and packed capillary columns in high-performance liquid chromatography and capillary electrochromatography. , 2006, Journal of chromatography. A.

[10]  Y. Michotte,et al.  Use of microbore LC-MS/MS for the quantification of oxcarbazepine and its active metabolite in rat brain microdialysis samples. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[11]  A. Tan,et al.  Enantiomeric separation of R,S-naproxen by conventional and nano-liquid chromatography with methyl-beta-cyclodextrin as a mobile phase additive. , 2001, Journal of chromatography. A.

[12]  A. L. Crego,et al.  Preparation of open tubular columns for reversed-phase high-performance liquid chromatography , 1993 .

[13]  J. Jorgenson,et al.  Ultrahigh-pressure reversed-phase capillary liquid chromatography: isocratic and gradient elution using columns packed with 1.0-micron particles. , 1999, Analytical chemistry.

[14]  P. Traldi,et al.  Direct coupling of a nano‐high‐performance liquid chromatography column to an ion trap designed for a gas chromatography/mass spectrometry system , 2001 .

[15]  Sung Won Kwon Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry. , 2004, Journal of agricultural and food chemistry.

[16]  Iulia M Lazar,et al.  Microfluidic liquid chromatography system for proteomic applications and biomarker screening. , 2006, Analytical chemistry.

[17]  S. Fanali,et al.  Use of vancomycin chiral stationary phase for the enantiomeric resolution of basic and acidic compounds by nano-liquid chromatography. , 2005, Journal of chromatography. A.

[18]  V. Schurig,et al.  Enantiomer separation by pressure‐supported electrochromatography using capillaries packed with Chirasil‐Dex polymer‐coated silica , 1999, Electrophoresis.

[19]  G. Schultz,et al.  Development of a nano‐electrospray mass spectrometry source for nanoscale liquid chromatography and sheathless capillary electrophoresis , 1998 .

[20]  S. Markey,et al.  Fully automated micro- and nanoscale one- or two-dimensional high-performance liquid chromatography system for liquid chromatography-mass spectrometry compatible with non-volatile salts for ion exchange chromatography. , 2005, Journal of chromatography. A.

[21]  Achille Cappiello,et al.  A simple approach for coupling liquid chromatography and electron ionization mass spectrometry , 2002, Journal of the American Society for Mass Spectrometry.

[22]  S. Fanali,et al.  Use of teicoplanin stationary phase for the enantiomeric resolution of atenolol in human urine by nano-liquid chromatography-mass spectrometry. , 2006, Journal of pharmaceutical and biomedical analysis.

[23]  G. Poland,et al.  Identification of class II HLA-DRB1*03-bound measles virus peptides by 2D-liquid chromatography tandem mass spectrometry. , 2005, Journal of proteome research.

[24]  Y. Okamoto,et al.  Chromatographic enantioseparation on a wall-coated open tubular capillary column containing covalently bound cellulose (3,5-dichlorophenyl carbamate) as chiral selector , 2002 .

[25]  Z. Berneman,et al.  Comparison between capillary and nano liquid chromatography-electrospray mass spectrometry for the analysis of minor DNA-melphalan adducts. , 2000, Journal of chromatography. B, Biomedical sciences and applications.

[26]  K. Otsuka,et al.  Physically adsorbed chiral stationary phase of avidin on monolithic silica column for capillary electrochromatography and capillary liquid chromatography , 2002, Electrophoresis.

[27]  K. Markides,et al.  Evaluation of automated isocratic and gradient nano-liquid chromatography and capillary electrochromatography. , 1999, Analytical chemistry.

[28]  T. Niwa,et al.  Stepwise gradient elution using switching valves in micro high-performance liquid chromatography , 1987 .

[29]  R. Swart,et al.  A weak cation-exchange phase for the separation of biogenic amines by open tubular liquid chromatography , 1997 .

[30]  B. Devreese,et al.  The Q-trap mass spectrometer, a novel tool in the study of protein glycosylation , 2004, Journal of the American Society for Mass Spectrometry.

[31]  N Tait,et al.  Fabrication of nanocolumns for liquid chromatography. , 1998, Analytical chemistry.

[32]  Y. Mechref,et al.  Miniaturized separation techniques in glycomic investigations. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[33]  G. Blaschke,et al.  Enantioseparations in capillary liquid chromatography and capillary electrochromatography using amylose tris(3,5‐dimethylphenylcarbamate) in combination with aqueous organic mobile phase , 2002 .

[34]  G. Guiochon,et al.  Characterization of monolithic columns for HPLC. , 2004, Journal of separation science.

[35]  Philip S. Green,et al.  Capillary liquid chromatography/atmospheric-pressure matrix-assisted laser desorption/ionisation ion trap mass spectrometry: a comparison with liquid chromatography/matrix-assisted laser desorption/ionisation time-of-flight and liquid chromatography/electrospray ionisation quadrupole time-of-flight , 2006, Rapid communications in mass spectrometry : RCM.

[36]  H. Zou,et al.  Protein A immobilized monolithic capillary column for affinity chromatography , 2002 .

[37]  J. Jorgenson,et al.  Evaluation of etched borosilicate glass capillary columns in reversed phase open tubular liquid chromatography , 1991 .

[38]  D. DeVoe,et al.  Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS. , 2005, Analytical chemistry.

[39]  J. Breitkreutz,et al.  Comparative capillary chromatographic and capillary electrochromatographic enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate) as chiral stationary phase , 2001 .

[40]  V. Remcho,et al.  Molecular imprint polymers as highly selective stationary phases for open tubular liquid chromatography and capillary electrochromatography , 1998, Electrophoresis.

[41]  Frantisek Svec,et al.  Monolithic materials: Promises, challenges, achievements. , 2006, Analytical chemistry.

[42]  K. Cabrera Applications of silica-based monolithic HPLC columns. , 2004, Journal of separation science.

[43]  Hsin-Yi Wu,et al.  Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. , 2005, Journal of proteome research.

[44]  J. Suchánková,et al.  Monolithic organic polymeric columns for capillary liquid chromatography and electrochromatography. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[45]  M. Jung,et al.  Toward Unified Enantioselective Chromatography with a Single Capillary Column Coated with Chirasil‐Dex , 1994 .

[46]  J. Jorgenson,et al.  Use of 1.5-microm porous ethyl-bridged hybrid particles as a stationary-phase support for reversed-phase ultrahigh-pressure liquid chromatography. , 2004, Analytical chemistry.

[47]  C. Cramers,et al.  Microcolumn liquid chromatography: Instrumentation, detection and applications , 1997 .

[48]  Frantisek Svec,et al.  PROMISES, CHALLENGES, ACHIEVEMENTS , 2006 .

[49]  Zhongqi Zhang,et al.  Method for Gradient Elution in Micro‐Flow Liquid Chromatography , 1998 .

[50]  C. Legido-Quigley,et al.  Comparison of styrene-divinylbenzene-based monoliths and Vydac nano-liquid chromatography columns for protein analysis. , 2004, Journal of chromatography. A.

[51]  R. Swart,et al.  RECENT PROGRESS IN OPEN TUBULAR LIQUID CHROMATOGRAPHY , 1997 .

[52]  S. Husson,et al.  Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. , 2005, Biochemical and biophysical research communications.

[53]  R. Swart,et al.  Preparation and evaluation of polyacrylate-coated fused-silica capillaries for reversed-phase open-tubular liquid chromatography , 1994 .

[54]  Use of a hepta-Tyr antibiotic modified silica stationary phase for the enantiomeric resolution of D,L-loxiglumide by electrochromatography and nano-liquid chromatography. , 2004, Journal of chromatography. A.

[55]  T. Greibrokk,et al.  Temperature-programmed packed capillary liquid chromatography coupled to evaporative light-scattering detection and electrospray ionization time-of-flight mass spectrometry for characterization of high-molecular-mass hindered amine light stabilizers. , 2004, Journal of chromatography. A.

[56]  G. Blaschke,et al.  Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high-performance liquid chromatography in common-size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography. , 2000, Journal of chromatography. A.

[57]  D Figeys,et al.  Nanoflow gradient generator coupled with mu-LC-ESI-MS/MS for protein identification. , 2001, Analytical chemistry.

[58]  K. Markides,et al.  Column switching in capillary liquid chromatography-tandem mass spectrometry for the quantitation of pg/ml concentrations of the free basic drug tolterodine and its active 5-hydroxymethyl metabolite in microliter volumes of plasma. , 1998, Journal of chromatography. A.

[59]  L. Signor,et al.  The application of 2-D dual nanoscale liquid chromatography and triple quadrupole-linear ion trap system for the identification of proteins. , 2005, Journal of separation science.

[60]  E. Francotte,et al.  Enantiomer separation by open-tubular liquid chromatography and electrochromatography in cellulose-coated capillaries , 1996 .

[61]  M. Novotny,et al.  Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters. , 1988, Analytical chemistry.

[62]  M. Girod,et al.  Enantioseparations using nonaqueous capillary electrochromatography on cellulose and amylose tris(3,5‐dimethylphenylcarbamates) coated on silica gels of various pore and particle size , 2001, Electrophoresis.

[63]  K. Tomer,et al.  Separations combined with mass spectrometry. , 2001, Chemical reviews.

[64]  R. Swart,et al.  Performance of an ethoxyethylacrylate stationary phase for open-tubular liquid chromatography , 1995 .

[65]  S. Fanali,et al.  Enantiomeric separation of mirtazapine and its metabolites by nano-liquid chromatography with UV-absorption and mass spectrometric detection. , 2005, Journal of separation science.

[66]  S. Fanali,et al.  Separation of basic compounds of pharmaceutical interest by using nano-liquid chromatography coupled with mass spectrometry. , 2007, Journal of chromatography. A.

[67]  H. Zou,et al.  Monolithic enantiomer-selective stationary phases for capillary electrochromatography. , 2006, Journal of separation science.

[68]  Y. Michotte,et al.  Capillary and nano-liquid chromatography-tandem mass spectrometry for the quantification of small molecules in microdialysis samples: comparison with microbore dimensions. , 2006, Journal of chromatography. A.

[69]  M. Ursem,et al.  Instrumental requirements for nanoscale liquid chromatography. , 1996, Analytical chemistry.

[70]  K. Nakanishi,et al.  High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). , 2006, Journal of chromatography. A.

[71]  M. Lämmerhofer Chiral separations by capillary electromigration techniques in nonaqueous media. II. Enantioselective nonaqueous capillary electrochromatography. , 2005, Journal of chromatography. A.

[72]  G. Blaschke,et al.  Chiral separations in capillary high‐performance liquid chromatography and nonaqueous capillary electrochromatography using helically chiral poly(diphenyl‐2‐pyridylmethyl methacrylate) as chiral stationary phase , 1999, Electrophoresis.

[73]  S. Fanali,et al.  Use of nano-liquid chromatography for the analysis of glycyrrhizin and glycyrrhetic acid in licorice roots and candies. , 2005, Journal of separation science.

[74]  K. James,et al.  Nano liquid chromatography with hybrid quadrupole time-of-flight mass spectrometry for the determination of yessotoxin in marine phytoplankton. , 2004, Journal of chromatography. A.

[75]  V. Schurig,et al.  On the feasibility of miniaturized enantiomeric separation by liquid chromatography (OTLC) and open tubular electrochromatography (OTEC) , 1997 .

[76]  L. Zolla,et al.  Two‐dimensional mapping as a tool for classification of green coffee bean species , 2005, Proteomics.

[77]  Li Zang,et al.  Low-attomole electrospray ionization MS and MS/MS analysis of protein tryptic digests using 20-microm-i.d. polystyrene-divinylbenzene monolithic capillary columns. , 2003, Analytical chemistry.

[78]  F. Švec,et al.  Separation of enantiomers by capillary electrochromatography , 2000 .

[79]  A. Cappiello,et al.  Variable-gradient generator for micro- and nano-HPLC. , 2003, Analytical chemistry.

[80]  John Alderman,et al.  Liquid chromatography on-chip: progression towards a μ-total analysis system , 2000 .

[81]  A. Deelder,et al.  Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. , 2005, Analytical chemistry.

[82]  T. Ikegami,et al.  Monolithic columns for high-efficiency HPLC separations. , 2004, Current opinion in chemical biology.

[83]  M. Lee,et al.  LC/MS applications in drug development. , 2002, Mass spectrometry reviews.

[84]  K. Nakanishi,et al.  High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with cellulose tris(3,5-dimethylphenylcarbamate). , 2004, Journal of separation science.

[85]  H. Zou,et al.  Separation of enantiomers by nanoliquid chromatography and capillary electrochromatography using a bonded cellulose trisphenylcarbamate stationary phase , 2002, Electrophoresis.

[86]  S. Fanali,et al.  Use of tert-butylbenzoylated tartardiamide chiral stationary phase for the enantiomeric resolution of acidic compounds by nano-liquid chromatography. , 2006, Journal of separation science.

[87]  H. Yin,et al.  Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. , 2005, Analytical chemistry.

[88]  S. Hjertén,et al.  High-performance liquid chromatography on continuous polymer beds , 1989 .

[89]  Y. Ishihama,et al.  Simplified gradient generator for micro- and nano-liquid chromatography. , 2006, Journal of chromatography. A.

[90]  J. Abian,et al.  Comparison of conventional, narrow‐bore and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations , 1999 .

[91]  R. Zubarev,et al.  Distinguishing and quantifying peptides and proteins containing D-amino acids by tandem mass spectrometry. , 2005, Analytical Chemistry.

[92]  Tohru Natsume,et al.  A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics. , 2002, Analytical chemistry.

[93]  J. Breitkreutz,et al.  Effect of organic solvent, electrolyte salt and a loading of cellulose tris (3,5‐dichlorophenyl‐ carbamate) on silica gel on enantioseparation characteristics in capillary electrochromatography , 2001, Electrophoresis.

[94]  M. Jung,et al.  Unified enantioselective capillary chromatography on a Chirasil-DEX stationary phase. Advantages of column miniaturization. , 1995, Journal of chromatography. A.

[95]  Z. El Rassi,et al.  Affinity monolithic capillary columns for glycomics/proteomics: 1. Polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano‐liquid chromatography in either a single column or columns coupled in series , 2006, Electrophoresis.

[96]  K. Uchiyama,et al.  Chemically modified chiral monolithic silica column prepared by a sol-gel process for enantiomeric separation by micro high-performance liquid chromatography. , 2002, Journal of chromatography. A.

[97]  W. J. Lough,et al.  Assessment of injection volume limits when using on-column focusing with microbore liquid chromatography , 1997 .

[98]  J. Jorgenson,et al.  Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns. , 1997, Analytical chemistry.

[99]  K. Otsuka,et al.  Chiral separation by open tubular capillary electrochromatography with adsorbed avidin as a stationary phase , 2001 .

[100]  G. Blaschke,et al.  Comparative study on the application of capillary liquid chromatography and capillary electrochromatography for investigation of enantiomeric purity of the contraceptive drug levonorgestrel. , 2003, Journal of pharmaceutical and biomedical analysis.

[101]  Jiye Jin,et al.  Postcolumn derivatization in microcolumn liquid chromatography , 2003 .

[102]  G. Blaschke,et al.  Enantioseparations in nonaqueous capillary liquid chromatography and capillary electrochromatography using cellulose tris(3,5‐dimethylphenylcarbamate) as chiral stationary phase , 2002, Electrophoresis.

[103]  M. Ursem,et al.  Optimised injection techniques for micro and capillary liquid chromatography , 1996 .

[104]  E. Francotte,et al.  Separation of enantiomers by packed capillary electrochromatography on a cellulose-based stationary phase. , 2000, Journal of chromatography. A.

[105]  Antonius Kettrup,et al.  Enantiomeric Selectivity in the Environmental Degradation of Dichlorprop As Determined by High-Performance Capillary Electrophoresis , 1996 .

[106]  Yasushi Ishihama,et al.  Proteomic LC-MS systems using nanoscale liquid chromatography with tandem mass spectrometry. , 2005, Journal of chromatography. A.

[107]  S. Fanali,et al.  Nano-liquid chromatography analysis of dansylated biogenic amines in wines. , 2007, Journal of chromatography. A.

[108]  Zilin Chen,et al.  Chemically L‐prolinamide‐modified monolithic silica column for enantiomeric separation of dansyl amino acids and hydroxy acids by capillary electrochromatography and μ‐high performance liquid chromatography , 2001, Electrophoresis.

[109]  F. Švec Preparation and HPLC applications of rigid macroporous organic polymer monoliths. , 2004, Journal of separation science.

[110]  P. Schmitt‐Kopplin,et al.  A simple and robust set-up for on-column sample preconcentration – nano-liquid chromatography – electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones , 2004, Analytical and bioanalytical chemistry.

[111]  M. Girod,et al.  Enantioseparations in non-aqueous capillary electrochromatography using polysaccharide type chiral stationary phases. , 2000, Journal of chromatography. A.

[112]  H. Meiring,et al.  Nanoscale LC–MS(n): technical design and applications to peptide and protein analysis , 2002 .

[113]  Bart Devreese,et al.  Combining gel and capillary electrophoresis, nano-LC and mass spectrometry for the elucidation of post-translational modifications of Trichoderma reesei cellobiohydrolase I. , 2004, Journal of chromatography. A.

[114]  S. Fanali,et al.  Enantiomeric separation of chlorophenoxy acid herbicides by nano liquid chromatography-UV detection on a vancomycin-based chiral stationary phase. , 2004, Journal of separation science.

[115]  Dorcas Weber,et al.  Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. , 2006, Journal of agricultural and food chemistry.

[116]  S. Hjertén,et al.  Electroosmosis- and pressure-driven chromatography in chips using continuous beds. , 2000, Analytical chemistry.

[117]  H. Claessens,et al.  A comparative study of large volume injection techniques for microbore columns in HPLC , 1987 .

[118]  Yu-Chang Tyan,et al.  Proteomic profiling of human urinary proteome using nano-high performance liquid chromatography/electrospray ionization tandem mass spectrometry. , 2006, Analytica chimica acta.

[119]  Liangliang Sun,et al.  Rapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electrospray ionization mass spectrometry. , 2006, Journal of chromatography. A.

[120]  M. Girod,et al.  Enantioseparations in normal- and reversed-phase nano-high-performance liquid chromatography and capillary electrochromatography using polyacrylamide and polysaccharide derivatives as chiral stationary phases , 1999 .

[121]  M. Bedair,et al.  Affinity chromatography with monolithic capillary columns. II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography. , 2005, Journal of chromatography. A.

[122]  H. Zou,et al.  Study of physically adsorbed stationary phases for open tubular capillary electrochromatography , 1999 .

[123]  Á. Végvári,et al.  Chiral separation of amino acids by ligand‐exchange capillary electrochromatography using continuous beds , 2000, Electrophoresis.

[124]  L. Brill,et al.  Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites. , 2005, Rapid communications in mass spectrometry : RCM.

[125]  N Avdalovic,et al.  Ion chromatography on-chip. , 2001, Journal of chromatography. A.

[126]  J. Embrechts,et al.  Equilenin-2'-deoxynucleoside adducts: analysis with nano-liquid chromatography coupled to nano-electrospray tandem mass spectrometry. , 2001, Journal of mass spectrometry : JMS.

[127]  K. Uchiyama,et al.  Comparison of enantioseparations using Cu(II) complexes with L-amino acid amides as chiral selectors or chiral stationary phases by capillary electrophoresis, capillary electrochromatography and micro liquid chromatography. , 2003, Journal of chromatography. A.

[128]  L. Colón,et al.  Very high-pressure capillary liquid chromatography assisted by voltage. , 2006, Journal of chromatography. A.

[129]  A. Cappiello,et al.  Determination of endocrine disrupting compounds in marine water by nanoliquid chromatography/direct-electron ionization mass spectrometry. , 2005, Analytical chemistry.

[130]  P. Roepstorff,et al.  A proteomic approach for investigation of photosynthetic apparatus in plants. , 2005, Proteomics.

[131]  A. Cappiello,et al.  Trace level determination of organophosphorus pesticides in water with the new direct-electron ionization LC/MS interface. , 2002, Analytical chemistry.

[132]  V. Schurig,et al.  Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography. , 2000, Journal of chromatography. A.

[133]  R. Blomhoff,et al.  Evaluation of temperature programming for gradient elution in packed capillary liquid chromatography coupled to electrochemical detection , 2001 .

[134]  A. deMello,et al.  On-chip chromatography: the last twenty years. , 2002 .

[135]  V. Schurig,et al.  Enantiomer separation using BSA as chiral stationary phase in affinity OTEC and OTLC , 1998 .

[136]  S. Ito,et al.  Nanoflow gradient generator for capillary high-performance liquid chromatography. , 2004, Analytical chemistry.

[137]  M. Bedair,et al.  Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography. , 2004, Journal of chromatography. A.

[138]  V. Schurig,et al.  Enantiomer separation by pressure-supported electrochromatography using capillaries packed with a permethyl-β-cyclodextrin stationary phase , 1998 .

[139]  M. Girod,et al.  Highly efficient enantioseparations in non‐aqueous capillary electrochromatography using cellulose tris(3,5‐dichlorophenylcarbamate) as chiral stationary phase , 2001 .

[140]  F. Švec,et al.  High-Performance Membrane Chromatography. A Novel Method of Protein Separation , 1990 .

[141]  A. Deelder,et al.  Normal-phase nanoscale liquid chromatography-mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. , 2004, Analytical chemistry.

[142]  Yi-Ming Liu,et al.  Assay of histamine by nano-liquid chromatography/tandem mass spectrometry with a packed nanoelectrospray emitter. , 2004, Rapid communications in mass spectrometry : RCM.

[143]  G. Blaschke,et al.  The effect of pore size of silica gel and concentration of buffer on capillary chromatographic and capillary electrochromatographic enantioseparations using cellulose tris(3,5‐dichlorophenylcarbamate) , 2001 .

[144]  J. Abian,et al.  Quantitative peptide bioanalysis using column-switching nano liquid chromatography/mass spectrometry. , 1998, Journal of mass spectrometry : JMS.

[145]  G. D. de Jong,et al.  Evaluation of the sensitivity of miniaturized liquid chromatography-electrospray ionization-mass spectrometry for pharmaceutical analysis. , 2005, Journal of separation science.

[146]  S. Fanali,et al.  Use of short-end injection capillary packed with a glycopeptide antibiotic stationary phase in electrochromatography and capillary liquid chromatography for the enantiomeric separation of hydroxy acids. , 2003, Journal of chromatography. A.

[147]  S. Fanali,et al.  Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano‐liquid chromatography , 2006, Electrophoresis.

[148]  Christian G Huber,et al.  Capillary scale monolithic trap column for desalting and preconcentration of peptides and proteins in one- and two-dimensional separations. , 2006, Journal of chromatography. A.

[149]  Yu-Chong Tai,et al.  Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate. , 2006, Lab on a chip.

[150]  J. Vissers Recent developments in microcolumn liquid chromatography. , 1999, Journal of chromatography. A.

[151]  A. Cappiello,et al.  Nano-high-performance liquid chromatography–electron ionization mass spectrometry approach for environmental analysis , 2003 .

[152]  Pierre Thibault,et al.  Integrated microfluidic devices with enhanced separation performance: application to phosphoproteome analyses of differentiated cell model systems. , 2006, Journal of separation science.

[153]  R. Danielsson,et al.  Comparison between different sheathless electrospray emitter configurations regarding the performance of nanoscale liquid chromatography-time-of-flight mass spectrometry analysis. , 2004, Journal of chromatography. A.

[154]  J. Thomas-Oates,et al.  Hyphenating liquid phase separation techniques with mass spectrometry: on-line or off-line. , 2005, The Analyst.

[155]  L. Colón,et al.  A Stationary Phase for Open Tubular Liquid Chromatography and Electrochromatography Using Sol-Gel Technology , 1995 .

[156]  T. Greibrokk,et al.  Capillary columns in liquid chromatography: between conventional columns and microchips. , 2004, Journal of separation science.

[157]  K. Nakanishi,et al.  High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. , 2006, Journal of separation science.

[158]  H. Zou,et al.  Preparation of a positively charged cellulose derivative chiral stationary phase with copolymerization reaction for capillary electrochromatographic separation of enantiomers , 2004, Electrophoresis.

[159]  J. V. Van Beeumen,et al.  Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. , 2005, Journal of proteome research.

[160]  T. Niwa,et al.  Unified capillary chromatography , 1988 .

[161]  M. F. Goy,et al.  Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry. , 2005, Biochemical and biophysical research communications.

[162]  R. Tompkins,et al.  A new approach for sequencing human IRS1 phosphotyrosine-containing peptides using CapLC-Q-TOF(micro). , 2005, Journal of mass spectrometry : JMS.