Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions

[1]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[2]  R. Hasina,et al.  Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC , 2016, Oncotarget.

[3]  Kai-Ping Chang,et al.  Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma , 2015, Proteomics.

[4]  D. Feller-Kopman,et al.  Pleural infection: past, present, and future directions. , 2015, The Lancet. Respiratory medicine.

[5]  M. Kohl,et al.  Plasma Neutrophil Gelatinase-Associated Lipocalin Is Primarily Related to Inflammation during Sepsis: A Translational Approach , 2015, PloS one.

[6]  Chia-Wei Hsu,et al.  In-depth Proteomic Analysis of Six Types of Exudative Pleural Effusions for Nonsmall Cell Lung Cancer Biomarker Discovery* , 2015, Molecular & Cellular Proteomics.

[7]  Eric P. Skaar,et al.  Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia , 2014, Thorax.

[8]  Yu-Sun Chang,et al.  Targeted proteomics pipeline reveals potential biomarkers for the diagnosis of metastatic lung cancer in pleural effusion. , 2014, Journal of proteome research.

[9]  A. Fernández-Villar,et al.  Calprotectin: a novel biomarker for the diagnosis of pleural effusion , 2012, British Journal of Cancer.

[10]  P. Åkesson,et al.  Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock , 2012, Critical Care.

[11]  A. Kapsoritakis,et al.  Neutrophil gelatinase-associated lipocalin (NGAL) in inflammatory bowel disease: association with pathophysiology of inflammation, established markers, and disease activity , 2012, Journal of Gastroenterology.

[12]  Yu-Sun Chang,et al.  Comprehensive proteome analysis of malignant pleural effusion for lung cancer biomarker discovery by using multidimensional protein identification technology. , 2011, Journal of proteome research.

[13]  J. Bakker,et al.  Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. , 2011, American journal of respiratory and critical care medicine.

[14]  A. Arnold,et al.  Management of spontaneous pneumothorax: British Thoracic Society pleural disease guideline 2010 , 2010, Thorax.

[15]  R. Davies,et al.  Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010 , 2010, Thorax.

[16]  J. M. Porcel,et al.  Pleural fluid tests to identify complicated parapneumonic effusions , 2010, Current opinion in pulmonary medicine.

[17]  O. Soehnlein,et al.  Roles of Heparin-Binding Protein in Bacterial Infections , 2010, Journal of Innate Immunity.

[18]  Rinaldo Bellomo,et al.  Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. , 2009, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[19]  J. M. Porcel,et al.  Biomarkers of infection for the differential diagnosis of pleural effusions , 2009, European Respiratory Journal.

[20]  O. Soehnlein,et al.  Neutrophil‐derived azurocidin alarms the immune system , 2009, Journal of leukocyte biology.

[21]  S. Sahn Diagnosis and management of parapneumonic effusions and empyema. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[22]  J. Weiss,et al.  The bactericidal/permeability-increasing protein (BPI) in infection and inflammatory disease. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[23]  P. Angel,et al.  S100A8 and S100A9 in inflammation and cancer. , 2006, Biochemical pharmacology.

[24]  J. Alegre,et al.  Metalloproteinases and tissue inhibitors of metalloproteinases in exudative pleural effusions , 2005, European Respiratory Journal.

[25]  J. Alegre,et al.  Polymorphonuclear Elastase in the Early Diagnosis of Complicated Pyogenic Pleural Effusions , 2003, Respiration.

[26]  T. F. Sevilla,et al.  Pleural-fluid myeloperoxidase in complicated and noncomplicated parapneumonic pleural effusions , 2002, European Respiratory Journal.

[27]  O. Levy A Neutrophil-Derived Anti-Infective Molecule: Bactericidal/Permeability-Increasing Protein , 2000, Antimicrobial Agents and Chemotherapy.

[28]  L. Voipio‐Pulkki,et al.  Bactericidal/permeability-increasing protein (BPI) in sepsis correlates with the severity of sepsis and the outcome , 2000, Intensive Care Medicine.

[29]  Bactericidal permeability increasing protein , 2019, Springer Reference Medizin.

[30]  E. Marchi,et al.  Proinflammatory and antiinflammatory cytokine levels in complicated and noncomplicated parapneumonic pleural effusions. , 2012, Chest.

[31]  R. Light Parapneumonic effusions and empyema. , 2006, Proceedings of the American Thoracic Society.

[32]  A. Esquerda,et al.  Tumor necrosis factor-alpha in pleural fluid: a marker of complicated parapneumonic effusions. , 2004, Chest.

[33]  Jennifer L. Dornan Past , Present , and Future Directions , 2002 .