Particle tracking stereomicroscopy in optical tweezers: control of trap shape.

We present an optical system capable of generating stereoscopic images to track trapped particles in three dimensions. Two-dimensional particle tracking on each image yields three dimensional position information. Our approach allows the use of a high numerical aperture (NA=1.3) objective and large separation angle, such that particles can be tracked axially with resolution of 3 nm at 340 Hz. Spatial Light Modulators (SLMs), the diffractive elements used to steer and split laser beams in Holographic Optical Tweezers, are also capable of more general operations. We use one here to vary the ratio of lateral to axial trap stiffness by changing the shape of the beam at the back aperture of the microscope objective. Beams which concentrate their optical power at the extremes of the back aperture give rise to much more efficient axial trapping. The flexibility of using an SLM allows us to create multiple traps with different shapes.

[1]  Graham M. Gibson,et al.  Assembly and force measurement with SPM-like probes in holographic optical tweezers , 2009 .

[2]  Peter John Rodrigo,et al.  Four-dimensional optical manipulation of colloidal particles , 2005 .

[3]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[4]  M. J. Padgett,et al.  Vortex knots in light , 2005 .

[5]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[6]  Jonathan Leach,et al.  Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. , 2008, Optics express.

[7]  J. Glückstad,et al.  Multi-particle three-dimensional coordinate estimation in real-time optical manipulation , 2009 .

[8]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[9]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[10]  Bo Sun,et al.  Flow visualization and flow cytometry with holographic video microscopy. , 2009 .

[11]  Chia-Hsiang Menq,et al.  Three-dimensional particle tracking with subnanometer resolution using off-focus images. , 2008, Applied optics.

[12]  Sang Joon Lee Advanced Particle-Based Velocimetry Techniques for Microscale Flows , 2009 .

[13]  Miles J. Padgett,et al.  Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers , 2001 .

[14]  Euan McLeod,et al.  Subwavelength direct-write nanopatterning using optically trapped microspheres. , 2008, Nature nanotechnology.

[15]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2002, CLEO 2002.

[16]  D. Grier A revolution in optical manipulation , 2003, Nature.

[17]  Wolfgang Singer,et al.  Three-dimensional force calibration of optical tweezers , 2000 .

[18]  Lars Friedrich,et al.  Interferometric 3D tracking of several particles in a scanning laser focus. , 2009, Optics express.

[19]  Ke Xiao,et al.  Flow visualization and flow cytometry with holographic video microscopy , 2010, OPTO.

[20]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[21]  S. Lee,et al.  Advanced particle-based velocimetry techniques for microscale flows , 2009 .

[22]  R. Piestun,et al.  Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. , 2008, Optics express.

[23]  Jesper Glückstad,et al.  Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation. , 2008, Optics express.

[24]  E. Stelzer,et al.  Trapping and tracking a local probe with a photonic force microscope , 2004 .

[25]  Peter Bøggild,et al.  Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. , 2005, Optics express.

[26]  Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins , 2008, 0810.5585.

[27]  W Sibbett,et al.  Generation of multiple Bessel beams for a biophotonics workstation. , 2008, Optics express.

[28]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[29]  Jesper Glückstad,et al.  Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes. , 2005, Optics express.

[30]  O. Otto,et al.  Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis. , 2008, The Review of scientific instruments.

[31]  Stéphane Régnier,et al.  Touching the microworld with force-feedback optical tweezers. , 2009, Optics express.

[32]  Rafael Piestun,et al.  Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system , 2009 .

[33]  Anna Linnenberger,et al.  Increasing Trap Stiffness with Position Clamping in Holographic Optical Tweezers , 2022 .

[34]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[35]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.