Recommender Systems Leveraging Multimedia Content

Recommender systems have become a popular and effective means to manage the ever-increasing amount of multimedia content available today and to help users discover interesting new items. Today’s recommender systems suggest items of various media types, including audio, text, visual (images), and videos. In fact, scientific research related to the analysis of multimedia content has made possible effective content-based recommender systems capable of suggesting items based on an analysis of the features extracted from the item itself. The aim of this survey is to present a thorough review of the state-of-the-art of recommender systems that leverage multimedia content, by classifying the reviewed papers with respect to their media type, the techniques employed to extract and represent their content features, and the recommendation algorithm. Moreover, for each media type, we discuss various domains in which multimedia content plays a key role in human decision-making and is therefore considered in the recommendation process. Examples of the identified domains include fashion, tourism, food, media streaming, and e-commerce.

[1]  Beth Logan,et al.  Mel Frequency Cepstral Coefficients for Music Modeling , 2000, ISMIR.

[2]  Zhou Su,et al.  What Videos Are Similar with You?: Learning a Common Attributed Representation for Video Recommendation , 2014, ACM Multimedia.

[3]  Benjamin Schrauwen,et al.  Deep content-based music recommendation , 2013, NIPS.

[4]  O. John,et al.  Big Five Inventory , 2012, Encyclopedia of Personality and Individual Differences.

[5]  Franca Garzotto,et al.  User-Centric vs. System-Centric Evaluation of Recommender Systems , 2013, INTERACT.

[6]  Tat-Seng Chua,et al.  Learning Image and User Features for Recommendation in Social Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[7]  Wei-Ta Chu,et al.  A hybrid recommendation system considering visual information for predicting favorite restaurants , 2017, World Wide Web.

[8]  Tommaso Di Noia,et al.  TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems , 2020, 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W).

[9]  Jae Kyeong Kim,et al.  A literature review and classification of recommender systems research , 2012, Expert Syst. Appl..

[10]  Louis-Philippe Morency,et al.  Multimodal Machine Learning: A Survey and Taxonomy , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Charu C. Aggarwal,et al.  Ensemble-Based and Hybrid Recommender Systems , 2016 .

[12]  Xavier Serra,et al.  Sound and Music Recommendation with Knowledge Graphs , 2016, ACM Trans. Intell. Syst. Technol..

[13]  John O'Donovan,et al.  Moodplay: Interactive music recommendation based on Artists' mood similarity , 2019, Int. J. Hum. Comput. Stud..

[14]  Vikram Pudi,et al.  Attentive neural architecture incorporating song features for music recommendation , 2018, RecSys.

[15]  Christoph Trattner,et al.  On the predictability of the popularity of online recipes , 2018, EPJ Data Science.

[16]  Dejing Dou,et al.  Topic-Aware Physical Activity Propagation with Temporal Dynamics in a Health Social Network , 2016, ACM Trans. Intell. Syst. Technol..

[17]  Masataka Goto,et al.  An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[18]  Guy Shani,et al.  Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.

[19]  Huan Liu,et al.  What Your Images Reveal: Exploiting Visual Contents for Point-of-Interest Recommendation , 2017, WWW.

[20]  Yanchi Liu,et al.  Exploiting Visual Contents in Posters and Still Frames for Movie Recommendation , 2018, IEEE Access.

[21]  Ruggero G. Pensa,et al.  Recommending Multimedia Objects in Cultural Heritage Applications , 2013, ICIAP Workshops.

[22]  Richard Mayer,et al.  Multimedia Learning , 2001, Visible Learning Guide to Student Achievement.

[23]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[24]  Jiebo Luo,et al.  2016 Ieee International Conference on Big Data (big Data) Solving Cold-start Problem in Large-scale Recommendation Engines: a Deep Learning Approach , 2022 .

[25]  Tao Mei,et al.  VideoReach: an online video recommendation system , 2007, SIGIR.

[26]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Jason Freeman,et al.  EarSketch : Teaching computational music remixing in an online Web Audio based learning environment , 2014 .

[28]  Paolo Cremonesi,et al.  Using visual features based on MPEG-7 and deep learning for movie recommendation , 2018, International Journal of Multimedia Information Retrieval.

[29]  Zhendong Niu,et al.  Heterogeneous Knowledge-Based Attentive Neural Networks for Short-Term Music Recommendations , 2018, IEEE Access.

[30]  Jing Liu,et al.  Personalized Geo-Specific Tag Recommendation for Photos on Social Websites , 2014, IEEE Transactions on Multimedia.

[31]  Patrick Kenny,et al.  Front-End Factor Analysis for Speaker Verification , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[32]  Tao Mei,et al.  On the selection of trending image from the web , 2015, 2015 IEEE International Conference on Multimedia and Expo (ICME).

[33]  Changsheng Xu,et al.  Personalized video recommendation based on cross-platform user modeling , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[34]  Dietmar Jannach,et al.  Are we really making much progress? A worrying analysis of recent neural recommendation approaches , 2019, RecSys.

[35]  Pirkko Oittinen,et al.  Image retrieval by end-users and intermediaries in a journalistic work context , 2006, IIiX.

[36]  Ernesto Diaz-Aviles,et al.  Mining Affective Context in Short Films for Emotion-Aware Recommendation , 2015, HT.

[37]  Julian J. McAuley,et al.  Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering , 2016, WWW.

[38]  Barry Smyth,et al.  The social camera: a case-study in contextual image recommendation , 2011, IUI '11.

[39]  Tommaso Di Noia,et al.  Towards Effective Device-Aware Federated Learning , 2019, AI*IA.

[40]  Lars Schmidt-Thieme,et al.  Learning Attribute-to-Feature Mappings for Cold-Start Recommendations , 2010, 2010 IEEE International Conference on Data Mining.

[41]  Fabio Persia,et al.  A Multimedia Recommender System , 2013, TOIT.

[42]  Luis Herranz,et al.  Food recognition and recipe analysis: integrating visual content, context and external knowledge , 2018, ArXiv.

[43]  Markus Schedl,et al.  Content-Based Multimedia Recommendation Systems: Definition and Application Domains , 2018, IIR.

[44]  Martha Larson,et al.  CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering , 2012, RecSys.

[45]  James Ze Wang,et al.  Studying Aesthetics in Photographic Images Using a Computational Approach , 2006, ECCV.

[46]  Klaus Seyerlehner FUSING BLOCK-LEVEL FEATURES FOR MUSIC SIMILARITY ESTIMATION , 2010 .

[47]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[48]  Dietmar Jannach,et al.  Automated Generation of Music Playlists: Survey and Experiments , 2014, ACM Comput. Surv..

[49]  Mohan S. Kankanhalli,et al.  ClickSmart: A Context-Aware Viewpoint Recommendation System for Mobile Photography , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[50]  Riccardo Leonardi,et al.  Affective Recommendation of Movies Based on Selected Connotative Features , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[51]  Jennifer Golbeck,et al.  Personality, movie preferences, and recommendations , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[52]  Wei Niu,et al.  Neural Personalized Ranking for Image Recommendation , 2018, WSDM.

[53]  Dietmar Jannach,et al.  Sequence-Aware Recommender Systems , 2018, UMAP.

[54]  Xiangnan He,et al.  Hierarchical Fashion Graph Network for Personalized Outfit Recommendation , 2020, SIGIR.

[55]  Djemel Ziou,et al.  A Generative Graphical Model for Collaborative Filtering of Visual Content , 2006, ICDM.

[56]  Yun Fu,et al.  Rule-Based Facial Makeup Recommendation System , 2017, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[57]  Masataka Goto,et al.  Improving Efficiency and Scalability of Model-Based Music Recommender System Based on Incremental Training , 2007, ISMIR.

[58]  N. Latha,et al.  Personalized Recommendation Combining User Interest and Social Circle , 2015 .

[59]  Zhiming Zhao,et al.  Unsupervised Approaches for Textual Semantic Annotation, A Survey , 2019, ACM Comput. Surv..

[60]  Daling Wang,et al.  An Approach for Clothing Recommendation Based on Multiple Image Attributes , 2016, WAIM.

[61]  Guang Li,et al.  LGA: latent genre aware micro-video recommendation on social media , 2018, Multimedia Tools and Applications.

[62]  Hamed Zamani,et al.  A flexible framework for evaluating user and item fairness in recommender systems , 2021, User Modeling and User-Adapted Interaction.

[63]  Zhoujun Li,et al.  Personalized video recommendation based on viewing history with the study on YouTube , 2012, ICIMCS '12.

[64]  Hamed Zamani,et al.  Current challenges and visions in music recommender systems research , 2017, International Journal of Multimedia Information Retrieval.

[65]  Tat-Seng Chua,et al.  Harvesting Multiple Sources for User Profile Learning: a Big Data Study , 2015, ICMR.

[66]  Sharath Chandra Guntuku,et al.  Latent Factor Representations for Cold-Start Video Recommendation , 2016, RecSys.

[67]  Yi Yu,et al.  ADVISOR: Personalized Video Soundtrack Recommendation by Late Fusion with Heuristic Rankings , 2014, ACM Multimedia.

[68]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[69]  Markus Schedl,et al.  Movie genome: alleviating new item cold start in movie recommendation , 2019, User Modeling and User-Adapted Interaction.

[70]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[71]  Tao Li,et al.  Music Recommendation Based on Acoustic Features and User Access Patterns , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[72]  Li Chen,et al.  Personality and Recommender Systems , 2015, Recommender Systems Handbook.

[73]  Qiang Ji,et al.  Video Affective Content Analysis: A Survey of State-of-the-Art Methods , 2015, IEEE Transactions on Affective Computing.

[74]  James She,et al.  Visual Background Recommendation for Dance Performances Using Deep Matrix Factorization , 2018, ACM Trans. Multim. Comput. Commun. Appl..

[75]  Jan Schlüter,et al.  Learning to Pinpoint Singing Voice from Weakly Labeled Examples , 2016, ISMIR.

[76]  Paolo Cremonesi,et al.  Outfit Completion and Clothes Recommendation , 2020, CHI Extended Abstracts.

[77]  Kyung-Yong Chung,et al.  Effect of facial makeup style recommendation on visual sensibility , 2014, Multimedia Tools and Applications.

[78]  Anton van den Hengel,et al.  Image-Based Recommendations on Styles and Substitutes , 2015, SIGIR.

[79]  Deborah Estrin,et al.  Yum-Me: A Personalized Nutrient-Based Meal Recommender System , 2016, ACM Trans. Inf. Syst..

[80]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[81]  Farida Karimova,et al.  A Survey of e-Commerce Recommender Systems , 2016 .

[82]  Djemel Ziou,et al.  A Graphical Model for Context-Aware Visual Content Recommendation , 2008, IEEE Transactions on Multimedia.

[83]  Tommaso Di Noia,et al.  How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models , 2020, SIGIR.

[84]  Fabio Celli,et al.  Automatic Personality and Interaction Style Recognition from Facebook Profile Pictures , 2014, ACM Multimedia.

[85]  Franca Garzotto,et al.  Content-Based Video Recommendation System Based on Stylistic Visual Features , 2016, Journal on Data Semantics.

[86]  Ladislav Peska,et al.  Towards Recommender Systems for Police Photo Lineup , 2017, DLRS@RecSys.

[87]  Jianmin Wang,et al.  Image annotation based on recommendation model , 2011, SIGIR '11.

[88]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Le Wu,et al.  Explainable Fashion Recommendation: A Semantic Attribute Region Guided Approach , 2019, IJCAI.

[90]  Julian J. McAuley,et al.  VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback , 2015, AAAI.

[91]  Jason Freeman,et al.  Towards a Hybrid Recommendation System for a Sound Library , 2019, IUI Workshops.

[92]  Derek Bridge,et al.  Diversity, Serendipity, Novelty, and Coverage , 2016, ACM Trans. Interact. Intell. Syst..

[93]  S. Srivastava,et al.  The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. , 1999 .

[94]  Riccardo Leonardi,et al.  A Connotative Space for Supporting Movie Affective Recommendation , 2011, IEEE Transactions on Multimedia.

[95]  Feng Xia,et al.  Mobile Multimedia Recommendation in Smart Communities: A Survey , 2013, IEEE Access.

[96]  Ran D. Zilca,et al.  Listening, watching, and reading: the structure and correlates of entertainment preferences. , 2011, Journal of personality.

[97]  Markus Schedl,et al.  Deep Learning in Music Recommendation Systems , 2019, Front. Appl. Math. Stat..

[98]  Markus Schedl,et al.  MMTF-14K: a multifaceted movie trailer feature dataset for recommendation and retrieval , 2018, MMSys.

[99]  Weisi Lin,et al.  Do Others Perceive You As You Want Them To?: Modeling Personality based on Selfies , 2015, ASM@ACM Multimedia.

[100]  Review of Content-based Recommendation System , 2014 .

[101]  Naomie Salim,et al.  Recommendation systems: a review , 2013 .

[102]  Thorsten Joachims,et al.  Playlist prediction via metric embedding , 2012, KDD.

[103]  S. Gosling,et al.  A very brief measure of the Big-Five personality domains , 2003 .

[104]  Markus Schedl,et al.  Feature-combination hybrid recommender systems for automated music playlist continuation , 2019, User Modeling and User-Adapted Interaction.

[105]  J. Bobadilla,et al.  Recommender systems survey , 2013, Knowl. Based Syst..

[106]  Alfred Kobsa User Modeling and User-Adapted Interaction , 2005, User Modeling and User-Adapted Interaction.

[107]  Franca Garzotto,et al.  User interface patterns in recommendation-empowered content intensive multimedia applications , 2017, Multimedia Tools and Applications.

[108]  Anthony K. H. Tung,et al.  Multiple feature fusion for social media applications , 2010, SIGMOD Conference.

[109]  Xavier Serra,et al.  A Semantic Hybrid Approach for Sound Recommendation , 2015, WWW.

[110]  Danny Azucar,et al.  Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis , 2018 .

[111]  Peter Knees,et al.  A survey of music similarity and recommendation from music context data , 2013, ACM Trans. Multim. Comput. Commun. Appl..

[112]  Tommaso Di Noia,et al.  Adversarial Machine Learning in Recommender Systems: State of the art and Challenges , 2020, ArXiv.

[113]  Weisi Lin,et al.  Personality, Culture, and System Factors - Impact on Affective Response to Multimedia , 2016, ArXiv.

[114]  Francesco Ricci,et al.  Location-aware music recommendation using auto-tagging and hybrid matching , 2013, RecSys.

[115]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[116]  Paolo Cremonesi,et al.  Using Visual Features and Latent Factors for Movie Recommendation , 2016, CBRecSys@RecSys.

[117]  Richard E. Mayer,et al.  The Cambridge handbook of multimedia learning, 1st Edition , 2005 .

[118]  Jianping Fan,et al.  Personalized news video recommendation , 2008, MMM.

[119]  Andreas Rauber,et al.  Integration of Text and Audio Features for Genre Classification in Music Information Retrieval , 2007, ECIR.

[120]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[121]  Haohong Wang,et al.  VideoTopic: Content-Based Video Recommendation Using a Topic Model , 2013, 2013 IEEE International Symposium on Multimedia.

[122]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[123]  Fabio Persia,et al.  Evaluation in Multimedia Recommender Systems: A Practical Guide , 2018, 2018 IEEE 12th International Conference on Semantic Computing (ICSC).

[124]  Morten Fjeld,et al.  NowAndThen: a social network-based photo recommendation tool supporting reminiscence , 2016, MUM.

[125]  Christoph Trattner,et al.  Exploiting Food Choice Biases for Healthier Recipe Recommendation , 2017, SIGIR.

[126]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[127]  Hao Yang,et al.  OutfitNet: Fashion Outfit Recommendation with Attention-Based Multiple Instance Learning , 2020, WWW.

[128]  Naila Murray,et al.  AVA: A large-scale database for aesthetic visual analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[129]  Pasquale Lops,et al.  Semantics-aware Content-based Recommender Systems , 2014, CBRecSys@RecSys.

[130]  Tao Mei,et al.  Contextual Video Recommendation by Multimodal Relevance and User Feedback , 2011, TOIS.

[131]  Markus Schedl,et al.  The neglected user in music information retrieval research , 2013, Journal of Intelligent Information Systems.

[132]  Yi-Cheng Zhang,et al.  Solving the apparent diversity-accuracy dilemma of recommender systems , 2008, Proceedings of the National Academy of Sciences.

[133]  Gert R. G. Lanckriet,et al.  Learning Content Similarity for Music Recommendation , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[134]  Bruce Ferwerda,et al.  Personality Traits and Music Genres: What Do People Prefer to Listen To? , 2017, UMAP.

[135]  Xiao Wu,et al.  Personalized clothing recommendation combining user social circle and fashion style consistency , 2017, Multimedia Tools and Applications.

[136]  Xu Chen,et al.  Aesthetic-based Clothing Recommendation , 2018 .

[137]  Yi Tay,et al.  Deep Learning based Recommender System: A Survey and New Perspectives , 2018 .

[138]  Justin Basilico,et al.  Artwork personalization at netflix , 2018, RecSys.

[139]  Li Chen,et al.  Trust-inspiring explanation interfaces for recommender systems , 2007, Knowl. Based Syst..

[140]  Tao Mei,et al.  Online video recommendation based on multimodal fusion and relevance feedback , 2007, CIVR '07.

[141]  Angelo Chianese,et al.  A multimedia recommender integrating object features and user behavior , 2010, Multimedia Tools and Applications.

[142]  Tao Mei,et al.  Learning to personalize trending image search suggestion , 2014, SIGIR.

[143]  Fei Xiao,et al.  Content-based recommendation for podcast audio-items using natural language processing techniques , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[144]  Markus Schedl,et al.  Audio-visual encoding of multimedia content for enhancing movie recommendations , 2018, RecSys.

[145]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[146]  Yun Fu,et al.  Examples-Rules Guided Deep Neural Network for Makeup Recommendation , 2017, AAAI.

[147]  Weisi Lin,et al.  Personality Modeling Based Image Recommendation , 2015, MMM.

[148]  Maurizio Morisio,et al.  Hybrid recommender systems: A systematic literature review , 2019, Intell. Data Anal..

[149]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[150]  Bruce Ferwerda,et al.  Fusing Social Media Cues: Personality Prediction from Twitter and Instagram , 2016, WWW.

[151]  Ye Wang,et al.  Improving Content-based and Hybrid Music Recommendation using Deep Learning , 2014, ACM Multimedia.

[152]  Paul Lamere,et al.  An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation , 2018, ACM Trans. Intell. Syst. Technol..

[153]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[154]  Bruce Ferwerda,et al.  Predicting Users' Personality from Instagram Pictures: Using Visual and/or Content Features? , 2018, UMAP.

[155]  Gang Chen,et al.  iGlasses: A Novel Recommendation System for Best-fit Glasses , 2016, SIGIR.

[156]  A. Guglielmi Deep Inference , 2014 .

[157]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[158]  Jont B. Allen,et al.  Short term spectral analysis, synthesis, and modification by discrete Fourier transform , 1977 .

[159]  Martha Larson,et al.  Collaborative Filtering beyond the User-Item Matrix , 2014, ACM Comput. Surv..

[160]  Zhoujun Li,et al.  On Video Recommendation over Social Network , 2012, MMM.

[161]  Jimmy J. Lin,et al.  The Neural Hype and Comparisons Against Weak Baselines , 2019, SIGIR Forum.

[162]  Daniel P. W. Ellis,et al.  Content-Aware Collaborative Music Recommendation Using Pre-trained Neural Networks , 2015, ISMIR.

[163]  Nizar Bouguila,et al.  Unsupervised Feature Selection for Accurate Recommendation of High-Dimensional Image Data , 2007, NIPS.

[164]  Tat-Seng Chua,et al.  Cross-Domain Recommendation via Clustering on Multi-Layer Graphs , 2017, SIGIR.

[165]  Hamed Zamani,et al.  Recommender Systems Fairness Evaluation via Generalized Cross Entropy , 2019, RMSE@RecSys.

[166]  Xavier Serra,et al.  A Deep Multimodal Approach for Cold-start Music Recommendation , 2017, DLRS@RecSys.

[167]  Yang Wang,et al.  Challenging Personalized Video Recommendation , 2016, 1612.06935.

[168]  Gert R. G. Lanckriet,et al.  The Natural Language of Playlists , 2011, ISMIR.

[169]  Ming-Syan Chen,et al.  UbiShop: Commercial item recommendation using visual part-based object representation , 2016, Multimedia Tools and Applications.

[170]  Charu C. Aggarwal,et al.  Content-Based Recommender Systems , 2016 .

[171]  Chun Chen,et al.  Music recommendation by unified hypergraph: combining social media information and music content , 2010, ACM Multimedia.

[172]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[173]  Xu Chen,et al.  Explainable Recommendation: A Survey and New Perspectives , 2018, Found. Trends Inf. Retr..

[174]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[175]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[176]  Mehrbakhsh Nilashi,et al.  Collaborative filtering recommender systems , 2013 .

[177]  F. Xavier Roca,et al.  Deep Inference of Personality Traits by Integrating Image and Word Use in Social Networks , 2018, ArXiv.

[178]  Qi Tian,et al.  Adversarial Training Towards Robust Multimedia Recommender System , 2018, IEEE Transactions on Knowledge and Data Engineering.

[179]  Deborah Estrin,et al.  Understanding user interactions with podcast recommendations delivered via voice , 2018, RecSys.