Efficient biocatalyst by encapsulating lipase into nanoporous gold

[1]  A. Corma,et al.  Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic–inorganic system , 2009 .

[2]  Mingwei Chen,et al.  Nanoporous Metals for Catalytic and Optical Applications , 2009 .

[3]  P. Gao,et al.  Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them , 2008 .

[4]  Yongxiao Bai,et al.  Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. , 2006, Journal of biotechnology.

[5]  Frank Caruso,et al.  Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation , 2005 .

[6]  V. Rotello,et al.  Highly Efficient Biocatalysts via Covalent Immobilization of Candida rugosa Lipase on Ethylene Glycol‐Modified Gold–Silica Nanocomposites , 2004 .

[7]  G. Zhu,et al.  Resolution of N-(2-ethyl-6-methylphenyl)alanine via free and immobilized lipase from Pseudomonas cepacia , 2006 .

[8]  Mustafa Yiǧitoǧlu,et al.  Studies on the activity and stability of immobilized horseradish peroxidase on poly(ethylene terephthalate) grafted acrylamide fiber , 2009, Bioprocess and biosystems engineering.

[9]  N. Chaniotakis,et al.  Stabilization of enzymes in nanoporous materials for biosensor applications. , 2005, Biosensors & bioelectronics.

[10]  Jay W. Grate,et al.  Nanostructures for enzyme stabilization , 2006 .

[11]  Yanhua Hou,et al.  Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70 , 2012, Molecular Biology Reports.

[12]  M. N. Gupta,et al.  A bioconjugate of Pseudomonas cepacia lipase with alginate with enhanced catalytic efficiency. , 2006, Biochimica et biophysica acta.

[13]  P. Xu,et al.  Enzyme-Nanoporous Gold Biocomposite: Excellent Biocatalyst with Improved Biocatalytic Performance and Stability , 2011, PloS one.

[14]  Abdul Hameed,et al.  Industrial applications of microbial lipases , 2006 .

[15]  Katsuya Kato,et al.  Enhanced Aldol Reaction Using an Aldolase I Antibody Immobilized in 3D Mesoporous Silica Foam , 2006 .

[16]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[17]  S. Suh,et al.  The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. , 1997, Structure.

[18]  Yinbo Qu,et al.  Enzyme-modified nanoporous gold-based electrochemical biosensors. , 2009, Biosensors & bioelectronics.

[19]  A. Chadha,et al.  Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials , 2008 .

[20]  Edmond Magner,et al.  Proteins in mesoporous silicates. , 2008, Angewandte Chemie.

[21]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Abraham Ulman,et al.  Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. , 2003, Journal of the American Chemical Society.

[23]  J. Erlebacher,et al.  Nanoporous metals with controlled multimodal pore size distribution. , 2003, Journal of the American Chemical Society.

[24]  Chang-Ha Lee,et al.  Immobilization of lipase on hydrophobic nano-sized magnetite particles , 2009 .

[25]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[26]  Punit Kohli,et al.  Smart nanotubes for biomedical and biotechnological applications. , 2003, Drug news & perspectives.