Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem

Phase retrieval problems occur in a width range of applications in physics and engineering such as crystallography, astronomy, and laser optics. Common to all of them is the recovery of an unknown signal from the intensity of its Fourier transform. Because of the well-known ambiguousness of these problems, the determination of the original signal is generally challenging. Although there are many approaches in the literature to incorporate the assumption of non-negativity of the solution into numerical algorithms, theoretical considerations about the solvability with this constraint occur rarely. In this paper, we consider the one-dimensional discrete-time setting and investigate whether the usually applied a priori non-negativity can overcame the ambiguousness of the phase retrieval problem or not. We show that the assumed non-negativity of the solution is usually not a sufficient a priori condition to ensure uniqueness in one-dimensional phase retrieval. More precisely, using an appropriate characterization of the occurring ambiguities, we show that neither the uniqueness nor the ambiguousness are rare exceptions.

[1]  Shuzhen Chen,et al.  Sparse representation utilizing tight frame for phase retrieval , 2015, EURASIP J. Adv. Signal Process..

[2]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[4]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[5]  J. Xin,et al.  PhaseLiftOff: an Accurate and Stable Phase Retrieval Method Based on Difference of Trace and Frobenius Norms , 2014, 1406.6761.

[6]  J. Ortega Numerical Analysis: A Second Course , 1974 .

[7]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[8]  Dustin G. Mixon,et al.  Phase retrieval from power spectra of masked signals , 2013, ArXiv.

[9]  G. Taylor The phase problem. , 2003, Acta crystallographica. Section D, Biological crystallography.

[10]  Marco Donatelli,et al.  Multilevel Gauss–Newton methods for phase retrieval problems , 2006 .

[11]  G. Plonka,et al.  Ambiguities in One-Dimensional Discrete Phase Retrieval from Fourier Magnitudes , 2015 .

[12]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[13]  L. G. Sodin,et al.  On the ambiguity of the image reconstruction problem , 1979 .

[14]  Gerlind Plonka-Hoch,et al.  Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain , 2016, Applied and Computational Harmonic Analysis.

[15]  Gerlind Plonka,et al.  Phase retrieval for Fresnel measurements using a shearlet sparsity constraint , 2014 .

[16]  C. Rheinboldt N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .

[17]  S. Venit,et al.  Numerical Analysis: A Second Course. , 1974 .

[18]  Bernhard G. Bodmann,et al.  Stable phase retrieval with low-redundancy frames , 2013, Adv. Comput. Math..

[19]  Alexandre d'Aspremont,et al.  Phase retrieval for imaging problems , 2013, Mathematical Programming Computation.

[20]  Leigh S. Martin,et al.  A generalization for optimized phase retrieval algorithms. , 2012, Optics express.

[21]  Dirk Langemann,et al.  Phase reconstruction by a multilevel iteratively regularized Gauss–Newton method , 2008 .

[22]  Herbert A. Hauptman,et al.  The phase problem of x-ray crystallography , 1983, Proceedings / Indian Academy of Sciences.

[23]  Monson H. Hayes,et al.  Phase retrieval using a window function , 1993, IEEE Trans. Signal Process..

[24]  Nirit Dudovich,et al.  Vectorial Phase Retrieval of 1-D Signals , 2013, IEEE Transactions on Signal Processing.

[25]  Monson H. Hayes,et al.  Iterative phase retrieval using two Fourier transform intensities , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[26]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[27]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[28]  Manfred Tasche,et al.  Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness , 2004 .

[29]  Robert Beinert,et al.  One-dimensional phase retrieval with additional interference measurements , 2016, ArXiv.

[30]  Monson H. Hayes,et al.  Phase retrieval using two Fourier-transform intensities , 1990 .

[31]  W. E. Briggs Zeros and factors of polynomials with positive coefficients and protein-ligand binding , 1985 .

[32]  Michael K. Ng,et al.  Phase Retrieval from Incomplete Magnitude Information via Total Variation Regularization , 2016, SIAM J. Sci. Comput..

[33]  Robert Beinert One-Dimensional Phase Retrieval with Additional Interference Intensity Measurements , 2017 .