Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes

[1]  Z. Gu,et al.  Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation , 2013 .

[2]  Liangti Qu,et al.  An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. , 2013, Physical chemistry chemical physics : PCCP.

[3]  N. Syarif,et al.  Binder-less activated carbon electrode from gelam wood for use in supercapacitors , 2013 .

[4]  Mingde Chen,et al.  Preparation of activated carbon from cotton stalk and its application in supercapacitor , 2013, Journal of Solid State Electrochemistry.

[5]  S. Hashmi,et al.  Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. , 2013, Bioresource technology.

[6]  A. Kucernak,et al.  Structural composite supercapacitors , 2013 .

[7]  J. Manyà,et al.  Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. , 2012, Environmental science & technology.

[8]  X. Zhao,et al.  On the configuration of supercapacitors for maximizing electrochemical performance. , 2012, ChemSusChem.

[9]  Arunabha Ghosh,et al.  Carbon-based electrochemical capacitors. , 2012, ChemSusChem.

[10]  Ling-Bin Kong,et al.  Porous wood carbon monolith for high-performance supercapacitors , 2012 .

[11]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[12]  David Granatstein,et al.  The economic value of biochar in crop production and carbon sequestration , 2011 .

[13]  S. Hashmi,et al.  Preparation of a Highly Porous Binderless Activated Carbon Monolith from Rubber Wood Sawdust by a Multi-Step Activation Process for Application in Supercapacitors , 2011, International Journal of Electrochemical Science.

[14]  K. T. Klasson,et al.  Screening biochars for heavy metal retention in soil: role of oxygen functional groups. , 2011, Journal of hazardous materials.

[15]  David Granatstein,et al.  Economic tradeoff between biochar and bio-oil production via pyrolysis , 2011 .

[16]  K. Wepasnick,et al.  Chemical and structural characterization of carbon nanotube surfaces , 2010, Analytical and bioanalytical chemistry.

[17]  J. Baltrusaitis,et al.  XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. , 2009, Physical chemistry chemical physics : PCCP.

[18]  F. Béguin,et al.  Confinement of Symmetric Tetraalkylammonium Ions in Nanoporous Carbon Electrodes of Electric Double-Layer Capacitors , 2009 .

[19]  D. Aurbach,et al.  Review on Engineering and Characterization of Activated Carbon Electrodes for Electrochemical Double Layer Capacitors and Separation Processes , 2008 .

[20]  Jinhua Jiang,et al.  Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials , 2008 .

[21]  Keryn Lian,et al.  Heteropoly Acid Electrolytes for Double-Layer Capacitors and Pseudocapacitors , 2008 .

[22]  G. Chen,et al.  Carbon nanotube and conducting polymer composites for supercapacitors , 2008 .

[23]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[24]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[25]  Chi-Chang Hu,et al.  Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors , 2007 .

[26]  J. Dentzer,et al.  A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes , 2006 .

[27]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[28]  P. Papakonstantinou,et al.  Raman study of multiwalled carbon nanotubes functionalized with oxygen groups , 2006 .

[29]  B. Saha,et al.  Surface modification and characterisation of a coal-based activated carbon , 2005 .

[30]  Y. S. Negi,et al.  Application of electrochemically prepared carbon nanofibers in supercapacitors , 2002 .

[31]  Junhua Jiang,et al.  Electrochemical supercapacitor material based on manganese oxide: preparation and characterization , 2002 .

[32]  G. Chen,et al.  Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole , 2002 .

[33]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[34]  van de Mcm Richard Sanden,et al.  X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films , 2000 .

[35]  R. McCreery,et al.  Characterization of the surface carbonyl and hydroxyl coverage on glassy carbon electrodes using Raman spectroscopy , 1999 .

[36]  Chi-Chang Hu,et al.  Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors , 1999 .

[37]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[38]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[39]  R. McCreery,et al.  Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra , 1990 .

[40]  J.A.S. Bett,et al.  Potentiodynamic analysis of surface oxides on carbon blacks , 1973 .

[41]  S. Sohi,et al.  A review of biochar and its use and function in soil , 2010 .

[42]  W. Shen,et al.  Surface Chemical Functional Groups Modification of Porous Carbon , 2008 .

[43]  W. Daud,et al.  Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions , 2007 .

[44]  J. A. Menéndez,et al.  On the nature of basic sites on carbon surfaces: an overview , 2004 .

[45]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .