Ein Beitrag zum molekularen Modell einer Ionenpumpe
暂无分享,去创建一个
[1] J. Somogyi. Über die Bindung der Ca-Ionen an das Na++K+-aktivierbare Adenosintriphosphatase-System des Gehirns , 1964, Experientia.
[2] H. Pabst. Über synthetische Diffusionsfaktoren I. Mitteilung Chemie und Spreading-Förderung , 1961, Klinische Wochenschrift.
[3] E. Hyman. Transfer of Metabolic Energy to Sodium , 1966, Nature.
[4] K. Iwashima,et al. Distribution of Caesium and Rubidium in Human Blood , 1966, Nature.
[5] A. Yunis,et al. Sodium-Potassium Dependent Adenosine Triphosphatase of Mammalian Reticulocytes and Mature Red Blood Cells.∗ , 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.
[6] J. Charnock,et al. A Molecular Model for a Sodium Pump , 1965, Nature.
[7] I. Glynn,et al. Uncoupling the Sodium Pump , 1965, Nature.
[8] Y. Ohi,et al. Influences of protamine on the na+, K+-dependent ATPase and on the active transport processes of potassium and of L-DOPA into brain slices. , 1965, Canadian journal of biochemistry.
[9] H. Thiele. [ON THE FORMATION OF TISSUE; ION ARRANGEMENT OF FILIFORM MOLECULES]. , 1964, Klinische Monatsblatter fur Augenheilkunde.
[10] R. Post,et al. Evidence of the Mechanism of Ouabain Inhibition of Cation Activated Adenosine Triphosphatase , 1963, Nature.
[11] S. Rose,et al. Phosphoprotein as an Intermediate in Cerebral Microsomal Adenosine-triphosphatase , 1963, Nature.
[12] R. Whittam. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. , 1962, The Biochemical journal.
[13] C. R. Merritt,et al. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. , 1960, The Journal of biological chemistry.
[14] U. Strauss,et al. Counterion Binding by Polyelectrolytes. V. The Effect of Binding of Univalent Cations by Polyphosphates on the Intrinsic Viscosity1 , 1960 .
[15] J. Skou. Further investigations on a Mg++ + Na+-activated adenosintriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane , 1960 .
[16] G. R. Mohan,et al. Aqueous Solutions of Polyvinylsulfonic Acid: Phase Separation and Specific. Interactions with Ions, Viscosity, Conductance and Potentiometry , 1959 .
[17] Von W. Kern,et al. Über die hydrolyse von peptiden und proteinen mit polyvinylsulfonsäuren , 1958 .
[18] H. Gregor,et al. Viscometric and conductometric titrations of polymethacrylic acid with alkali metal and quaternary ammonium bases , 1957 .
[19] Q. A. Trementozzi,et al. A viscosity study of polyelectrolytes in the presence of added salts , 1955 .
[20] B. Conway. Effects of salts on the viscosity of polyelectrolyte solutions , 1955 .
[21] F. T. Wall,et al. Reduced viscosities of polyelectrolytes in the presence of added salts , 1955 .
[22] Von W. Kern,et al. Polyvinylsulfonsäure als katalysator hydrolytischer reaktionen , 1955 .
[23] C. Marshall,et al. Vinyltoluene‐styrene copolymer sulfonic acid. I. Viscous properties and ionic character in hydrochloric acid solutions , 1954 .
[24] H. Cantow,et al. Vorschlag zur Unterscheidung der 2 Größen: „Grenzviskositätszahl”︁ u. „konventionelle Viskositätszahl”︁ , 1954 .
[25] J. Hermans,et al. Sodium salts of pectin and of carboxy methyl cellulose in aqueous sodium chloride. I. Viscosities , 1952 .
[26] G. E. Kimball,et al. The effect of salts on the viscosity of solutions of polyacrylic acid , 1950 .
[27] R. M. Fuoss,et al. Electrostatic interaction of polyelectrolytes and simple electrolytes , 1948 .
[28] K. Hess. Die hochmolekularen organischen Verbindungen —-Kautschuk und Cellulose. Von Hermann Staudinger. 540 Seiten. Julius Springer, Berlin 1932. Geb. 52 RM. , 1932 .