Ein Beitrag zum molekularen Modell einer Ionenpumpe

[1]  J. Somogyi Über die Bindung der Ca-Ionen an das Na++K+-aktivierbare Adenosintriphosphatase-System des Gehirns , 1964, Experientia.

[2]  H. Pabst Über synthetische Diffusionsfaktoren I. Mitteilung Chemie und Spreading-Förderung , 1961, Klinische Wochenschrift.

[3]  E. Hyman Transfer of Metabolic Energy to Sodium , 1966, Nature.

[4]  K. Iwashima,et al.  Distribution of Caesium and Rubidium in Human Blood , 1966, Nature.

[5]  A. Yunis,et al.  Sodium-Potassium Dependent Adenosine Triphosphatase of Mammalian Reticulocytes and Mature Red Blood Cells.∗ , 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[6]  J. Charnock,et al.  A Molecular Model for a Sodium Pump , 1965, Nature.

[7]  I. Glynn,et al.  Uncoupling the Sodium Pump , 1965, Nature.

[8]  Y. Ohi,et al.  Influences of protamine on the na+, K+-dependent ATPase and on the active transport processes of potassium and of L-DOPA into brain slices. , 1965, Canadian journal of biochemistry.

[9]  H. Thiele [ON THE FORMATION OF TISSUE; ION ARRANGEMENT OF FILIFORM MOLECULES]. , 1964, Klinische Monatsblatter fur Augenheilkunde.

[10]  R. Post,et al.  Evidence of the Mechanism of Ouabain Inhibition of Cation Activated Adenosine Triphosphatase , 1963, Nature.

[11]  S. Rose,et al.  Phosphoprotein as an Intermediate in Cerebral Microsomal Adenosine-triphosphatase , 1963, Nature.

[12]  R. Whittam The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. , 1962, The Biochemical journal.

[13]  C. R. Merritt,et al.  Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. , 1960, The Journal of biological chemistry.

[14]  U. Strauss,et al.  Counterion Binding by Polyelectrolytes. V. The Effect of Binding of Univalent Cations by Polyphosphates on the Intrinsic Viscosity1 , 1960 .

[15]  J. Skou Further investigations on a Mg++ + Na+-activated adenosintriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane , 1960 .

[16]  G. R. Mohan,et al.  Aqueous Solutions of Polyvinylsulfonic Acid: Phase Separation and Specific. Interactions with Ions, Viscosity, Conductance and Potentiometry , 1959 .

[17]  Von W. Kern,et al.  Über die hydrolyse von peptiden und proteinen mit polyvinylsulfonsäuren , 1958 .

[18]  H. Gregor,et al.  Viscometric and conductometric titrations of polymethacrylic acid with alkali metal and quaternary ammonium bases , 1957 .

[19]  Q. A. Trementozzi,et al.  A viscosity study of polyelectrolytes in the presence of added salts , 1955 .

[20]  B. Conway Effects of salts on the viscosity of polyelectrolyte solutions , 1955 .

[21]  F. T. Wall,et al.  Reduced viscosities of polyelectrolytes in the presence of added salts , 1955 .

[22]  Von W. Kern,et al.  Polyvinylsulfonsäure als katalysator hydrolytischer reaktionen , 1955 .

[23]  C. Marshall,et al.  Vinyltoluene‐styrene copolymer sulfonic acid. I. Viscous properties and ionic character in hydrochloric acid solutions , 1954 .

[24]  H. Cantow,et al.  Vorschlag zur Unterscheidung der 2 Größen: „Grenzviskositätszahl”︁ u. „konventionelle Viskositätszahl”︁ , 1954 .

[25]  J. Hermans,et al.  Sodium salts of pectin and of carboxy methyl cellulose in aqueous sodium chloride. I. Viscosities , 1952 .

[26]  G. E. Kimball,et al.  The effect of salts on the viscosity of solutions of polyacrylic acid , 1950 .

[27]  R. M. Fuoss,et al.  Electrostatic interaction of polyelectrolytes and simple electrolytes , 1948 .

[28]  K. Hess Die hochmolekularen organischen Verbindungen —-Kautschuk und Cellulose. Von Hermann Staudinger. 540 Seiten. Julius Springer, Berlin 1932. Geb. 52 RM. , 1932 .