Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts.

[1]  D. Noh,et al.  Chemical ordering in PtNi nanocrystals , 2016 .

[2]  P. Yang,et al.  Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes , 2016 .

[3]  G. Somorjai,et al.  Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy. , 2015, Journal of the American Chemical Society.

[4]  Tim Mueller,et al.  High-Performance Transition Metal-Doped Pt3Ni Octahedra for Oxygen Reduction Reaction. , 2015 .

[5]  X. Duan,et al.  High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction , 2015, Science.

[6]  Younan Xia,et al.  Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. , 2015, Journal of the American Chemical Society.

[7]  S. Joo,et al.  Skeletal octahedral nanoframe with Cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal. , 2015, ACS nano.

[8]  G. Somorjai,et al.  Atomic Structure of Pt 3 Ni Nanoframe Electrocatalysts by in Situ X ‐ ray Absorption Spectroscopy , 2015 .

[9]  Lin Gan,et al.  Element-specific anisotropic growth of shaped platinum alloy nanocrystals , 2014, Science.

[10]  Karren L. More,et al.  Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces , 2014, Science.

[11]  Yadong Li,et al.  Removal and Utilization of Capping Agents in Nanocatalysis , 2014 .

[12]  M. Coumar,et al.  Treat cancers by targeting survivin: just a dream or future reality? , 2013, Cancer treatment reviews.

[13]  P. Strasser,et al.  Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. , 2013, ACS nano.

[14]  Dingsheng Wang,et al.  Defect-dominated shape recovery of nanocrystals: a new strategy for trimetallic catalysts. , 2013, Journal of the American Chemical Society.

[15]  Lin Gan,et al.  Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. , 2013, Nature materials.

[16]  Lin Gan,et al.  Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. , 2013, Faraday discussions.

[17]  Applications of Extended X‐Ray Absorption Fine‐Structure Spectroscopy to Studies of Bimetallic Nanoparticle Catalysts , 2013 .

[18]  Lin Gan,et al.  Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. , 2012, Nano letters.

[19]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[20]  Hui Zhang,et al.  Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. , 2012, Angewandte Chemie.

[21]  Miaofang Chi,et al.  Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. , 2011, Journal of the American Chemical Society.

[22]  Minhua Shao,et al.  Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. , 2011, Nano letters.

[23]  Younan Xia,et al.  Controlling the shapes of silver nanocrystals with different capping agents. , 2010, Journal of the American Chemical Society.

[24]  Junliang Zhang,et al.  Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts. , 2010, Journal of the American Chemical Society.

[25]  Jun Zhang,et al.  Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. , 2010, Nano letters.

[26]  S. Haigh,et al.  Synthesis and Structural Characterization of Branched Palladium Nanostructures , 2009 .

[27]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[28]  David B. Williams,et al.  The Transmission Electron Microscope , 2009 .

[29]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[30]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[31]  Bongjin Simon Mun,et al.  Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. , 2007, Nature materials.

[32]  Bing-Joe Hwang,et al.  Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[33]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[34]  M. Baskes,et al.  Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles. , 2004, The Journal of chemical physics.

[35]  M. Hove,et al.  Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo) , 2005 .

[36]  Mostafa A. El-Sayed,et al.  Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution , 2004 .

[37]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[38]  G. E. van Dorssen,et al.  XAFS spectroscopy; fundamental principles and data analysis , 2000 .

[39]  J. Kollár,et al.  The surface energy of metals , 1998 .

[40]  Ankudinov,et al.  Multiple-scattering calculations of x-ray-absorption spectra. , 1995, Physical review. B, Condensed matter.

[41]  P. Nash,et al.  The Ni-Pt (Nickel-Platinum) system , 1989 .

[42]  Dahmani,et al.  Ni-Pt phase diagram: Experiment and theory. , 1985, Physical review letters.

[43]  Gauthier,et al.  Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. , 1985, Physical review. B, Condensed matter.

[44]  J. Bell,et al.  Experiment and Theory , 1968 .