Buckling and ultimate strength of perforated plate panels subject to axial compression: experimental and numerical investigations with design formulations

It has been recognised that the current shipbuilding industry design practice for perforated plates is not relevant with relatively large opening size and/or with large plate thickness, and it is believed that this problem has caused structural damage accidents in actual ship structures with openings. The motive of the present study was to resolve this issue by introducing a new design formulation of the critical buckling strength for perforated plates, which is pertinent to the structural design application on the safety side. For this purpose, a series of experimental and numerical studies are undertaken on buckling and ultimate strength of plates and stiffened panels with an opening and subject to axial compressive actions. A total of 90 perforated plates and also a total of 9 stiffened panels with an opening are tested up to and beyond ultimate strength, where important parameters of influence such as plate aspect ratio, plate slenderness ratio, opening size and shape, and opening location are varied. Elastic-plastic large deflection finite element method analyses are performed on the test structures. Existing and newly derived design-formula solutions of buckling and ultimate strength of the test plate panels are compared with experimental results and non-linear finite element method computations, indicating that the critical buckling strength formulation developed in the present study as well as an existing ultimate strength formula is useful for design and strength assessment of steel plate panels with an opening. The experimental database on buckling collapse of steel plate panels with an opening will be very useful for future use. Details of experiments and numerical computations together with insights developed from the present study are documented.