A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons

[1]  M. Turner,et al.  Borylated Arylamine–Benzothiadiazole Donor–Acceptor Materials as Low-LUMO, Low-Band-Gap Chromophores , 2017 .

[2]  T. Herng,et al.  Rylene Ribbons with Unusual Diradical Character , 2017 .

[3]  Dongqing Wu,et al.  Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. , 2016, Journal of the American Chemical Society.

[4]  M. Tommasini,et al.  Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. , 2016, Journal of the American Chemical Society.

[5]  T. Michinobu,et al.  Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor–acceptor polymers in organic electronics , 2016 .

[6]  Gang Li,et al.  Efficient Bottom-Up Preparation of Graphene Nanoribbons by Mild Suzuki-Miyaura Polymerization of Simple Triaryl Monomers. , 2016, Chemistry.

[7]  G. M. e Silva,et al.  Polaron Properties in Armchair Graphene Nanoribbons. , 2016, The journal of physical chemistry. A.

[8]  A. Ferrari,et al.  Raman Fingerprints of Atomically Precise Graphene Nanoribbons , 2016, Nano letters.

[9]  Kenichiro Itami,et al.  Structurally uniform and atomically precise carbon nanostructures , 2016 .

[10]  Ari Harju,et al.  Ultra-narrow metallic armchair graphene nanoribbons , 2015, Nature Communications.

[11]  K. Müllen,et al.  New advances in nanographene chemistry. , 2015, Chemical Society reviews.

[12]  M. Turner,et al.  Enhancing electron affinity and tuning band gap in donor–acceptor organic semiconductors by benzothiadiazole directed C–H borylation , 2015, Chemical science.

[13]  K. Sun,et al.  On-surface synthesis of rylene-type graphene nanoribbons. , 2015, Journal of the American Chemical Society.

[14]  K. Müllen,et al.  Bottom-up synthesis of chemically precise graphene nanoribbons. , 2015, Chemical record.

[15]  Ting Cao,et al.  Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. , 2015, Nature nanotechnology.

[16]  D. Fang,et al.  Silicane nanoribbons: electronic structure and electric field modulation , 2014 .

[17]  K. Müllen Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. , 2014, ACS nano.

[18]  H. Sakaguchi,et al.  Width‐Controlled Sub‐Nanometer Graphene Nanoribbon Films Synthesized by Radical‐Polymerized Chemical Vapor Deposition , 2014, Advanced materials.

[19]  R. Sundaram,et al.  Graphene nanoribbon blends with P3HT for organic electronics. , 2014, Nanoscale.

[20]  Xinliang Feng Synthesis of Structurally Well‐Defined and Liquid‐Phase‐Processable Graphene Nanoribbons. , 2014 .

[21]  Juanxia Wu,et al.  Raman spectroscopy of graphene , 2014 .

[22]  A. Sinitskii,et al.  Large-scale solution synthesis of narrow graphene nanoribbons , 2014, Nature Communications.

[23]  K. Kim,et al.  Charge-Transport Tuning of Solution-Processable Graphene Nanoribbons by Substitutional Nitrogen Doping , 2013 .

[24]  F. Fischer,et al.  Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. , 2013, ACS nano.

[25]  Zhirong Liu,et al.  Inverse relationship between carrier mobility and bandgap in graphene. , 2013, The Journal of chemical physics.

[26]  K. Schanze,et al.  It takes more than an imine: the role of the central atom on the electron-accepting ability of benzotriazole and benzothiadiazole oligomers. , 2012, Journal of the American Chemical Society.

[27]  G. Hilt,et al.  Understanding the regioselectivity in Scholl reactions for the synthesis of oligoarenes. , 2012, Chemical communications.

[28]  H. Bock,et al.  Highly twisted arenes by Scholl cyclizations with unexpected regioselectivity. , 2011, Angewandte Chemie.

[29]  Dustin K. James,et al.  Graphene Chemistry: Synthesis and Manipulation , 2011 .

[30]  L. Toppare,et al.  Benzotriazole containing conjugated polymers for multipurpose organic electronic applications , 2011 .

[31]  K. Müllen,et al.  Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. , 2011, Angewandte Chemie.

[32]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[33]  J. Maultzsch,et al.  Symmetry properties of vibrational modes in graphene nanoribbons , 2010, 1003.0328.

[34]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[35]  Edwin C. Kan,et al.  Armchair graphene nanoribbons: Electronic structure and electric-field modulation , 2008, 0803.1233.

[36]  Klaus Müllen,et al.  Two-dimensional graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[37]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[38]  L. Novotný,et al.  Optical Measurement of the Phase-Breaking Length in Graphene , 2008, 1008.1563.

[39]  Jian Zhou,et al.  Vibrational property and Raman spectrum of carbon nanoribbon , 2007 .

[40]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[41]  Hans-Joachim Egelhaaf,et al.  Optical Bandgaps of π‐Conjugated Organic Materials at the Polymer Limit: Experiment and Theory , 2007 .

[42]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical review letters.

[43]  Dmitri E. Nikonov,et al.  Analysis of graphene nanoribbons as a channel material for field-effect transistors , 2006 .

[44]  S. Konchenko,et al.  Cyclic aryleneazachalcogens: Synthesis, vibrational spectra, and π-electron structures , 1990 .

[45]  I. K. Korobeinicheva,et al.  On the ``selenation'' method of assignment of organic sulphur compounds vibrational spectra , 1990 .

[46]  M. Tommasini,et al.  Helically Coiled Graphene Nanoribbons. , 2017, Angewandte Chemie.

[47]  L. Novotný,et al.  Low temperature raman study of the electron coherence length near graphene edges. , 2011, Nano letters.

[48]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[49]  J. Bell,et al.  Experiment and Theory , 1968 .