Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model

In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.

[1]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[2]  Mostafa Bendahmane,et al.  Weak and classical solutions to predator―prey system with cross-diffusion , 2010 .

[3]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[4]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[5]  G. Gambino,et al.  Turing pattern formation in the Brusselator system with nonlinear diffusion. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  S L Wearne,et al.  Turing pattern formation in fractional activator-inhibitor systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[8]  Kai Schneider,et al.  Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction--diffusion systems , 2008, 0807.1359.

[9]  T. Geisel,et al.  Forecast and control of epidemics in a globalized world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Yuan Lou,et al.  On diffusion-induced blowups in a mutualistic model , 2001 .

[11]  S. Wearne,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[12]  Alexander A. Nepomnyashchy,et al.  Oscillatory instability in super-diffusive reaction – diffusion systems: Fractional amplitude and phase diffusion equations , 2008 .

[13]  V. V. Gafiychuk,et al.  Pattern formation in a fractional reaction diffusion system , 2006 .

[14]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[15]  Dirk Horstmann,et al.  Remarks on some Lotka–Volterra type cross-diffusion models , 2007 .

[16]  F. Weissing,et al.  Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity , 2011, Science.

[17]  Werner Horsthemke,et al.  Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Ricardo Ruiz-Baier,et al.  A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion , 2011 .

[19]  Eric Deleersnijder,et al.  Front dynamics in fractional-order epidemic models. , 2011, Journal of theoretical biology.

[20]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[21]  G. Gambino Turing pattern formation in the Brusselator system with anomalous diffusion , 2013 .

[22]  Mark Buchanan,et al.  Ecological modelling: The mathematical mirror to animal nature , 2008, Nature.

[23]  Matthias Weiss,et al.  Stabilizing Turing patterns with subdiffusion in systems with low particle numbers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Ricardo Ruiz-Baier,et al.  Analysis of a finite volume method for a cross-diffusion model in population dynamics , 2011 .

[25]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[26]  H. Larralde,et al.  Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.

[27]  Long Chen FINITE VOLUME METHODS , 2011 .

[28]  A. Jüngel Diffusive and nondiffusive population models , 2010 .

[29]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[30]  D. Brockmann,et al.  Human Mobility and Spatial Disease Dynamics , 2010 .

[31]  Laurent Seuront,et al.  Multifractal random walk in copepod behavior , 2001 .

[32]  J. Toner,et al.  Hydrodynamics and phases of flocks , 2005 .

[33]  Mihály Kovács,et al.  Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.

[34]  Alexander A. Nepomnyashchy,et al.  Turing instability in sub-diffusive reaction–diffusion systems , 2007 .

[35]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[36]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[37]  A. Nepomnyashchy,et al.  Turing instability of anomalous reaction–anomalous diffusion systems , 2008, European Journal of Applied Mathematics.

[38]  S. N. Kruzhkov,et al.  Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .

[39]  Bruce Ian Henry,et al.  Turing pattern formation with fractional diffusion and fractional reactions , 2007 .

[40]  Bernard J. Matkowsky,et al.  Turing Pattern Formation in the Brusselator Model with Superdiffusion , 2008, SIAM J. Appl. Math..

[41]  Kenneth H. Karlsen,et al.  Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue , 2006, Networks Heterog. Media.

[42]  Lorenzo Pareschi,et al.  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences , 2010 .

[43]  Baowen Li,et al.  Anomalous heat conduction and anomalous diffusion in one-dimensional systems. , 2003, Physical review letters.

[44]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[45]  Werner Horsthemke,et al.  Turing instability in reaction-subdiffusion systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Jerry P. Gollub,et al.  Advanced Physics in the High Schools , 2002 .