Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier

The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph(−/−) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph(+/+) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph(−/−) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex.

[1]  J F Ashmore,et al.  Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  G. Housley,et al.  Hair Cells–Beyond the Transducer , 2008, Journal of Membrane Biology.

[3]  D. Jagger,et al.  Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice , 2003, The Journal of physiology.

[4]  Michael A. Muniak,et al.  The spiral ganglion: Connecting the peripheral and central auditory systems , 2011, Hearing Research.

[5]  J. Guinan Olivocochlear Efferents: Anatomy, Physiology, Function, and the Measurement of Efferent Effects in Humans , 2006, Ear and hearing.

[6]  D. Ryugo,et al.  Hair cell innervation by spiral ganglion neurons in the mouse , 1987, The Journal of comparative neurology.

[7]  Jean-Pierre Julien,et al.  Functions of intermediate filaments in neuronal development and disease. , 2004, Journal of neurobiology.

[8]  G. Moonen,et al.  New insights into peripherin expression in cochlear neurons , 2007, Neuroscience.

[9]  M. Charles Liberman,et al.  Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables , 1989, Hearing Research.

[10]  B. M. Johnstone,et al.  Stimulus‐related potassium changes in the organ of Corti of guinea‐pig. , 1989, The Journal of physiology.

[11]  M. C. Brown,et al.  Unique Postsynaptic Signaling at the Hair Cell Efferent Synapse Permits Calcium to Evoke Changes on Two Time Scales , 1997, The Journal of Neuroscience.

[12]  M. Liberman,et al.  Cochlear efferent feedback balances interaural sensitivity , 2006, Nature Neuroscience.

[13]  J. Niparko,et al.  Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of held , 1997, The Journal of comparative neurology.

[14]  P. Fuchs,et al.  The Postsynaptic Function of Type II Cochlear Afferents , 2009, Nature.

[15]  H. Sobkowicz,et al.  Synaptic arrangements between inner hair cells and tunnel fibers in the mouse cochlea , 2004, Synapse.

[16]  Daniel J. Lee,et al.  Central auditory pathways mediating the rat middle ear muscle reflexes. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[17]  J. Flores-Otero,et al.  Firing Patterns of Type II Spiral Ganglion Neurons In Vitro , 2004, The Journal of Neuroscience.

[18]  G. Housley,et al.  Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development , 2011, Neural Development.

[19]  M. Liberman,et al.  Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway. , 2012, Journal of neurophysiology.

[20]  M. Charles Liberman,et al.  Efferent Feedback Minimizes Cochlear Neuropathy from Moderate Noise Exposure , 2013, The Journal of Neuroscience.

[21]  J. Guinan,et al.  Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? , 2004, The Journal of the Acoustical Society of America.

[22]  M. C. Brown,et al.  Central trajectories of type II spiral ganglion cells from various cochlear regions in mice , 1994, Hearing Research.

[23]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[24]  T Kawase,et al.  Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. , 1993, Journal of neurophysiology.

[25]  J. Guinan,et al.  The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. , 1996, The Journal of the Acoustical Society of America.

[26]  D. O. Kim Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system , 1986, Hearing Research.

[27]  M. Sachs,et al.  Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. , 1987, Journal of neurophysiology.

[28]  Brown Mc,et al.  Morphology of labeled afferent fibers in the guinea pig cochlea , 1987, The Journal of comparative neurology.

[30]  M. C. Brown,et al.  Fast, but not slow, effects of olivocochlear activation are resistant to apamin. , 2001, Journal of neurophysiology.

[31]  K. H. Iwasa,et al.  CELLULAR BASIS OF THE COCHLEAR AMPLIFIER , 2009 .

[32]  M. Brown Morphology of labeled afferent fibers in the guinea pig cochlea , 1987, The Journal of comparative neurology.

[33]  P. Fuchs,et al.  The Synaptic Physiology of Cochlear Hair Cells , 2002, Audiology and Neurotology.

[34]  P. Fuchs,et al.  Ultrastructure of cisternal synapses on outer hair cells of the mouse cochlea , 2014, The Journal of comparative neurology.

[35]  Minh N. H. Nguyen,et al.  Reduced number of unmyelinated sensory axons in peripherin null mice , 2002, Journal of neurochemistry.

[36]  Daniel J. Lee,et al.  Identification of Inputs to Olivocochlear Neurons Using Transneuronal Labeling with Pseudorabies Virus (PRV) , 2013, Journal of the Association for Research in Otolaryngology.

[37]  TS Sridhar,et al.  A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Sophie Savel,et al.  Auditory Efferents Facilitate Sound Localization in Noise in Humans , 2011, The Journal of Neuroscience.

[39]  J. Ashmore A fast motile response in guinea‐pig outer hair cells: the cellular basis of the cochlear amplifier. , 1987, The Journal of physiology.

[40]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[41]  P. Fuchs,et al.  Excitability of Type II Cochlear Afferents , 2014, The Journal of Neuroscience.

[42]  Peter Dallos,et al.  Prestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification , 2008, Neuron.

[43]  M. C. Brown,et al.  Physiology and anatomy of single olivocochlear neurons in the cat , 1986, Hearing Research.

[44]  M. Kössl,et al.  Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control. , 2012, Journal of neurophysiology.

[45]  J. Julien,et al.  Type III intermediate filament peripherin inhibits neuritogenesis in type II spiral ganglion neurons in vitro , 2010, Neuroscience Letters.

[46]  G. Housley,et al.  Differential actions of isoflurane and ketamine-based anaesthetics on cochlear function in the mouse , 2012, Hearing Research.

[47]  M. Feldman,et al.  Hair cell counts in an age-graded series of rat cochleas , 1982, Hearing Research.

[48]  R. Romand,et al.  Ontogenesis of type II spiral ganglion neurons during development: Peripherin immunohistochemistry , 1993, International Journal of Developmental Neuroscience.

[49]  Joe C. Adams,et al.  Olivocochlear innervation in the mouse: Immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization , 2003, The Journal of comparative neurology.

[50]  J. Guinan,et al.  Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons. , 2014, Journal of neurophysiology.

[51]  J. Montgomery,et al.  Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea , 2012, Neural Development.

[52]  J. Julien,et al.  Neuronal expression of peripherin, a type III intermediate filament protein, in the mouse hindbrain , 2007, Histochemistry and Cell Biology.

[53]  J. Montgomery,et al.  Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea , 2007, Development.

[54]  B. Helfand,et al.  A role for intermediate filaments in determining and maintaining the shape of nerve cells. , 2003, Molecular biology of the cell.

[55]  John J Guinan,et al.  Cochlear efferent innervation and function , 2010, Current opinion in otolaryngology & head and neck surgery.

[56]  J. Ashmore,et al.  The cochlear amplifier , 2004, Current Biology.