Measuring complexity in a business cycle model of the Kaldor-type

Abstract The purpose of this paper is to study the dynamical behavior of a family of two-dimensional nonlinear maps associated to an economic model. Our objective is to measure the complexity of the system using techniques of symbolic dynamics in order to compute the topological entropy. The analysis of the variation of this important topological invariant with the parameters of the system, allows us to distinguish different chaotic scenarios. Finally, we use a another topological invariant to distinguish isentropic dynamics and we exhibit numerical results about maps with the same topological entropy. This work provides an illustration of how our understanding of higher dimensional economic models can be enhanced by the theory of dynamical systems.

[1]  Periods for triangular maps , 1993, Bulletin of the Australian Mathematical Society.

[2]  Ricardo Severino,et al.  Isentropic Real cubic Maps , 2003, Int. J. Bifurc. Chaos.

[3]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[4]  H. R. Hudson,et al.  A MODEL OF THE TRADE CYCLE , 1957 .

[5]  P. Chu First-passage time for stability analysis of the Kaldor model , 2006 .

[6]  Dumitru Opris,et al.  Neimark-Sacker bifurcation for the discrete-delay Kaldor model , 2009 .

[7]  Neimark–Sacker bifurcation for the discrete-delay Kaldor–Kalecki model , 2009 .

[8]  H. Lorenz Nonlinear Dynamical Economics and Chaotic Motion , 1989 .

[9]  Adam Krawiec,et al.  The stability problem in the Kaldor–Kalecki business cycle model , 2005 .

[10]  J. Sousa Ramos,et al.  SYMBOLIC DYNAMICS OF BIMODAL MAPS , .

[11]  Akitaka Dohtani,et al.  Chaos, complex transients and noise: Illustration with a Kaldor model , 1996 .

[12]  M. S. El Naschie,et al.  Superstrings, entropy and the elementary particles content of the standard model , 2006 .

[13]  Cristina Januário,et al.  CHAOTIC BEHAVIOR IN A TWO-DIMENSIONAL BUSINESS CYCLE MODEL , 2007 .

[14]  Winston W. Chang,et al.  The Existence and Persistence of Cycles in a Non-linear Model: Kaldor's 1940 Model Re-examined , 1971 .

[15]  N. Kaldor,et al.  A Model of the Trade Cycle , 1940 .

[16]  Jorge Duarte,et al.  The influence of coupling on chaotic maps modelling bursting cells , 2006 .

[17]  J. S. Ramos,et al.  Topological invariants in forced piecewise-linear FitzHugh–Nagumo-like systems , 2005 .