Durability and Testing – Chemical Matrix Degradation Processes

This chapter, and the two that follow, are structured to provide an overview of the available test methods for assessment of the performance of construction materials under a wide variety of modes of attack. These are divided, broadly, into ‘chemical’ (Chap. 8), ‘transport’ (Chap. 9) and ‘physical’ (Chap. 10) – and it is noted that this classification is to some extent arbitrary, with a significant degree of crossover between the three categories which is difficult to take explicitly into consideration in a format such as this. Some areas are discussed in far more detail than others, either because they are critical points related to certain areas of alkali-activation technology, or sometimes simply because limited information is available regarding some forms of attack on alkali-activated materials (AAMs); biologically-induced corrosion is one such case, where very little information is available in the open literature. These chapters will in general raise questions for future consideration rather than providing detailed answers, due to the limited state of understanding of AAM degradation mechanisms at present, although recommendations will be drawn wherever possible.

[1]  Hao Wang,et al.  Potential application of geopolymers as protection coatings for marine concrete III. Field experiment , 2012 .

[2]  John L. Provis,et al.  Structural Evolution of Fly Ash Based Geopolymers in Alkaline Environments , 2008 .

[3]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to alkali–aggregate reaction , 2001 .

[4]  Xiaomin Zhu,et al.  Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives , 2009 .

[5]  V. M. Malhotra,et al.  Properties and Durability of Alkali-Activated Slag Concrete , 1992 .

[6]  P. Monteiro Scaling and saturation laws for the expansion of concrete exposed to sulfate attack. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Deventer,et al.  Acid resistance of inorganic polymer binders. 1. Corrosion rate , 2012 .

[8]  Frank Winnefeld,et al.  Hydration of alkali-activated slag: comparison with ordinary Portland cement , 2006 .

[9]  Jadambaa Temuujin,et al.  Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions , 2011 .

[10]  J. Provis,et al.  Durability of fly ash/GGBFS based geopolymers exposed to carbon capture solvents , 2011 .

[11]  H. Brouwers,et al.  Study of the relation between hydrated Portland cement composition and leaching resistance , 1998 .

[12]  J. Deventer,et al.  Geopolymers : structure, processing, properties and industrial applications , 2009 .

[13]  T. Ichikawa,et al.  Alkali–silica Reaction, Pessimum Effects and Pozzolanic Effect , 2009 .

[14]  Y. Xi,et al.  ASR Potentials of Glass Aggregates in Water-Glass Activated Fly Ash and Portland Cement Mortars , 2003 .

[15]  David Kosson,et al.  EVALUATION OF WASTE-FORM ANALYSIS PROTOCOLS THAT MAY REPLACE TCLP , 2000 .

[16]  L. Kopecký,et al.  Geopolymer materials based on fly ash , 2005 .

[17]  J. E. Gillott,et al.  Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete , 1996 .

[18]  Mohammed K. Ibrahim,et al.  DURABILITY OF PROPRIETARY CEMENTITIOUS MATERIALS FOR USE IN WASTEWATER TRANSPORT SYSTEMS , 2003 .

[19]  Zuhua Zhang,et al.  Potential application of geopolymers as protection coatings for marine concrete II. Microstructure and anticorrosion mechanism , 2010 .

[20]  I. Soroka Portland cement paste and concrete , 1979 .

[21]  S. Xie,et al.  Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory , 2004 .

[22]  J. Gillott,et al.  Rapid Test of Concrete Expansivity Due to Internal Sulfate Attack , 1992 .

[23]  H. Kukko,et al.  CHEMICAL AND MECHANICAL PROPERTIES OF ALKALI-ACTIVATED BLAST FURNACE SLAG (F-CONCRETE) , 1982 .

[24]  F. Adenot,et al.  Modelling of the corrosion of the cement paste by deionized water , 1992 .

[25]  D. Chaudhary,et al.  Influence of high temperature and high acidic conditions on geopolymeric composite material for steel pickling tanks , 2009, Journal of Materials Science.

[26]  Jay G. Sanjayan,et al.  Sulfate attack on alkali-activated slag concrete , 2002 .

[27]  John L. Provis,et al.  The Role of Sulfide in the Immobilization of Cr(VI) in Fly Ash Geopolymers , 2008 .

[28]  A. Allahverdi NITRIC ACID ATTACK ON HARDENED PASTE OF GEOPOLYMERIC CEMENTS , 2001 .

[29]  Pacheco-Torgal Fernando,et al.  Durability and Environmental Performance of Alkali-Activated Tungsten Mine Waste Mud Mortars , 2010 .

[30]  J. Deventer,et al.  Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure , 2013 .

[31]  A. Allahverdi,et al.  SULFURIC ACID ATTACK ON HARDENED PASTE OF GEOPOLYMER CEMENTS PART 1. MECHANISM OF CORROSION AT RELATIVELY HIGH CONCENTRATIONS , 2005 .

[32]  P. Grattan-Bellew,et al.  MICROSTRUCTURAL INVESTIGATION OF DETERIORATED PORTLAND CEMENT CONCRETES , 1996 .

[33]  S. Diamond,et al.  29Si MAS NMR spectroscopic investigation of alkali silica reaction product gels , 1993 .

[34]  Mark Hernandez,et al.  BIOGENIC SULFURIC ACID ATTACK ON DIFFERENT TYPES OF COMMERCIALLY PRODUCED CONCRETE SEWER PIPES , 2010 .

[35]  Linhua Jiang,et al.  Study on Abilities of Mineral Admixtures and Geopolymer to Restrain ASR , 2005 .

[36]  Michael D. A. Thomas,et al.  The effect of supplementary cementing materials on alkali-silica reaction: A review , 2011 .

[37]  John L. Provis,et al.  Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials , 2010 .

[38]  C. You-zhi,et al.  Alkali aggregate reaction in alkali slag cement mortars , 2002 .

[39]  Jochen Stark,et al.  Dauerhaftigkeit von Beton , 1999 .

[40]  T. Bakharev,et al.  Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .

[41]  David Stark,et al.  ALKALI-SILICA REACTIVITY: AN OVERVIEW OF RESEARCH , 1993 .

[42]  D. W. Hobbs,et al.  B-TC 106-3-Detection of potential alkali-reactivity of aggregates-Method for aggregate combinations using concrete prisms , 2000 .

[43]  John C. Cripps,et al.  Pyrite oxidation in Lower Lias Clay at concrete highway structures affected by thaumasite, Gloucestershire, UK , 2003 .

[44]  Jeffrey L. Davis,et al.  Analysis of concrete from corroded sewer pipe , 1998 .

[45]  Francisca Puertas,et al.  Hormigón alternativo basado en escorias activadas alcalinamente , 2008 .

[46]  C. Shi Corrosion resistance of alkali-activated slag cement , 2003 .

[47]  D. S. Perera,et al.  Geopolymers for nuclear waste immobilisation , 2009 .

[48]  J. Provis,et al.  Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+). , 2008, Journal of hazardous materials.

[49]  S. Al-Otaibi,et al.  Durability of concrete incorporating GGBS activated by water-glass , 2008 .

[50]  K. Scrivener,et al.  High-performance concretes from calcium aluminate cements , 1999 .

[51]  O. Hjelmar EVALUATION OF ENVIRONMENTAL ASPECTS OF ALTERNATIVE MATERIALS USING AN INTEGRATED APPROACH ASSISTED BY A DATABASE/EXPERT SYSTEM , 2003 .

[52]  P. K. Mehta,et al.  A New Test for Sulfate Resistance of Cements , 1974 .

[53]  Xiao Yao,et al.  Potential application of geopolymers as protection coatings for marine concrete I. Basic properties , 2010 .

[54]  R. Talero Kinetochemical and morphological differentiation of ettringites by the Le Chatelier–Anstett test , 2002 .

[55]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[56]  Ángel Palomo,et al.  Alkali–aggregate reaction in activated fly ash systems , 2007 .

[57]  G. Davies,et al.  Use of the NBRI accelerated test to evaluate the effectiveness of mineral admixtures in preventing the alkali-silica reaction , 1987 .

[58]  Michael D.A. Thomas,et al.  Alkali-silica reactions (ASR): literature review on parameters influencing laboratory performance testing , 2012 .

[59]  C. D. PARKER,et al.  Species of Sulphur Bacteria Associated with the Corrosion of Concrete , 1947, Nature.

[60]  John L. Provis,et al.  Pore solution composition and alkali diffusion in inorganic polymer cement , 2010 .

[61]  Luc Taerwe,et al.  CHEMICAL, MICROBIOLOGICAL AND IN SITU TEST METHODS FOR BIOGENIC SULFURIC ACID CORROSION OF CONCRETE , 2000 .

[62]  J. J. Lenehan,et al.  Durability of Building Materials and Components in the Agricultural Environment, Part II: Metal Structures , 2000 .

[63]  Caijun Shi,et al.  Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. , 2006, Journal of hazardous materials.

[64]  F. Puertas,et al.  Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type , 2009 .

[65]  R. R. Lloyd,et al.  The durability of inorganic polymer cements , 2008 .

[66]  M. D. A. Thomas,et al.  EFFECT OF SLAG ON EXPANSION DUE TO ALKALI-AGGREGATE REACTION IN CONCRETE , 1998 .

[67]  Hossein Rostami,et al.  Alkali ash material: a novel fly ash-based cement. , 2003, Environmental science & technology.

[68]  Caijun Shi,et al.  Durability of alkali-activated cements and concretes , 2006 .

[69]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[70]  Silvio Delvasto,et al.  Morteros de cementos alcalinos. Resistencia química al ataque por sulfatos y al agua de mar , 2002 .

[71]  A. Bertron,et al.  Degradation of cement pastes by organic acids , 2007 .

[72]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[73]  D. P. Dias,et al.  Argamassa geopolimérica: estudo da degradação por sulfato de sódio e ácido sulfúrico , 2009 .

[74]  Francisca Puertas,et al.  The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate , 2002 .

[75]  David S. Kosson,et al.  An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials , 2002 .

[76]  Frank Winnefeld,et al.  Alkali–Silica Reaction: the Influence of Calcium on Silica Dissolution and the Formation of Reaction Products , 2011 .