Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

Abstract This article is to summarize the process development and key characterization results for the newly-developed Fe–9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness ( K JQ ) at represented temperatures: 240–280 MPa √m at room temperature and 160–220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic–martensitic steels such as HT9 and NF616.

[1]  B. Cockeram,et al.  Deformation and fracture properties in neutron irradiated pure Mo and Mo alloys , 2008 .

[2]  D. Hoelzer,et al.  Mechanical properties of neutron irradiated nanostructured ferritic alloy 14YWT , 2009 .

[3]  T. Byun,et al.  Microstructural analysis of ion-irradiation-induced hardening in inconel 718 , 2003 .

[4]  M. Eroglu,et al.  A new model for diffusion bonding and its application to duplex alloys , 1999 .

[5]  K. F. Russell,et al.  Nanometer scale precipitation in ferritic MA/ODS alloy MA957 , 2004 .

[6]  Thak Sang Byun,et al.  Tensile properties of Inconel 718 after low temperature neutron irradiation , 2003 .

[7]  J. Kim,et al.  Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations , 2013 .

[8]  N. Orhan,et al.  Diffusion bonding between Ti–6Al–4V alloy and ferritic stainless steel , 2007 .

[9]  Wolfgang Hoffelner,et al.  Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress , 2009 .

[10]  D. Hoelzer,et al.  Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT , 2009 .

[11]  G. R. Odette,et al.  On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys , 2009 .

[12]  Louis K. Mansur,et al.  Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors , 2009 .

[13]  John P. Shingledecker,et al.  Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys , 2005 .

[14]  Edward A. Kenik,et al.  Stability of Ferritic MA/ODS Alloys at High Temperatures , 2004, Microscopy and Microanalysis.

[15]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[16]  Jin Yu,et al.  A new equation for the Cr equivalent in 9 to 12 pct Cr steels , 1998 .

[17]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[18]  E. I. Uskov,et al.  Methodological aspects of studying the fracture toughness of tungsten. Report No. 2 , 1984 .

[19]  F. Garner,et al.  Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443 °C , 2009 .

[20]  T. Byun,et al.  Core materials development for the fuel cycle R&D program , 2011 .

[21]  F. Garner,et al.  Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling , 2009 .

[22]  B. Cockeram,et al.  Weldable ductile molybdenum alloy development , 2008 .

[23]  Eal H. Lee,et al.  Ion-irradiation-induced hardening in Inconel 718 , 2001 .

[24]  J. Yeom,et al.  Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part II—Mechanistic models and predictions , 2013 .

[25]  T. Byun,et al.  Application of intercritical heat treatment to improve toughness of SA508 Cl.3 reactor pressure vessel steel , 1999 .

[26]  A. Steckmeyer,et al.  Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel , 2010 .

[27]  A. Kimura,et al.  Effects of neutron irradiation on the tensile properties of high-Cr oxide dispersion strengthened ferritic steels , 2007 .

[28]  T. Byun,et al.  Dose Dependence of Strength After Low-Temperature Irradiation in Metallic Materials , 2012, Metallurgical and Materials Transactions A.

[29]  A. Czyrska-Filemonowicz,et al.  Thermal stability of dispersoids in ferritic oxide-dispersion-strengthened alloys , 1994 .

[30]  Steven J. Zinkle,et al.  Materials needs for fusion, Generation IV fission reactors and spallation neutron sources – similarities and differences , 2004 .

[31]  B. Cockeram,et al.  Irradiation hardening in unalloyed and ODS molybdenum during low dose neutron irradiation at 300 °C and 600 °C , 2008 .

[32]  Mikhail A. Sokolov,et al.  Microstructure control for high strength 9Cr ferritic–martensitic steels , 2012 .

[33]  R. Klueh,et al.  High-Chromium Ferritic and Martensitic Steels for Nuclear Applications , 2001 .

[34]  Y. Carlan,et al.  Chemical and microstructural evolution on ODS Fe–14CrWTi steel during manufacturing stages , 2012 .

[35]  A. Czyrska-Filemonowicz,et al.  Mechanically alloyed, ferritic oxide dispersion strengthened alloys: structure and properties , 1997 .

[36]  J. Kim,et al.  Stress relaxation behavior of nanocluster-strengthened ferritic alloy at high temperatures , 2012 .

[37]  B. Cockeram,et al.  The influence of fast neutron irradiation and irradiation temperature on the tensile properties of wrought LCAC and TZM molybdenum , 2005 .

[38]  R. Klueh,et al.  Development of new nano-particle-strengthened martensitic steels , 2005 .

[39]  T. Byun,et al.  Impact properties of irradiated HT9 from the fuel duct of FFTF , 2012 .

[40]  Les Erasmus,et al.  Modelling of Manganese Partitioning in Dual Phase Steel during Annealing , 2000 .

[41]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[42]  D. Gelles,et al.  Influence of specimen size and microstructure on the fracture toughness of a martensitic stainless steel , 1984 .

[43]  Mikhail A. Sokolov,et al.  Influence of Particle Dispersions on the High-Temperature Strength of Ferritic Alloys , 2007 .

[44]  E. Kenik,et al.  Radiation-Induced Degradation of Stainless Steel Light Water Reactor Internals , 2012 .

[45]  A. Czyrska-Filemonowicz,et al.  Creep mechanisms of ferritic oxide dispersion strengthened alloys , 2003 .

[46]  Shigeharu Ukai,et al.  High-temperature strength characterization of advanced 9Cr-ODS ferritic steels , 2009 .

[47]  A. Kimura,et al.  Microstructural changes of neutron irradiated ODS ferritic and martensitic steels , 2004 .

[48]  David S. Gelles,et al.  Development of oxide dispersion strengthened ferritic steels for fusion , 1996 .

[49]  T. Byun,et al.  Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF , 2013 .

[50]  R. L. Klueh,et al.  Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors , 2005 .

[51]  A. Kohyama,et al.  Creep constitutive equation of dual phase 9Cr-ODS steel , 2008 .

[52]  M. L. Hamilton,et al.  The fracture toughness database of ferritic alloys irradiated to very high neutron exposures , 1992 .

[53]  Steven J. Zinkle,et al.  Prospects for accelerated development of high performance structural materials , 2011 .

[54]  H. Ullmaier,et al.  Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress , 2008 .

[55]  A. Pineau,et al.  Influences of process parameters and microstructure on the fracture mechanisms of ODS steels , 2013 .

[56]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[57]  D. Gelles,et al.  Irradiation creep and swelling from 400 to 600 °C of the oxide dispersion strengthened ferritic alloy MA957 , 2004 .

[58]  F. Carré,et al.  Structural materials challenges for advanced reactor systems , 2009 .

[59]  A. Kimura,et al.  Stability of Y–Ti complex oxides in Fe–16Cr–0.1Ti ODS ferritic steel before and after heavy-ion irradiation , 2009 .

[60]  M. L. Hamilton,et al.  Microstructural Evolution of Alloy 718 at High Helium and Hydrogen Generation Rates during Irradiation with 600-800 MeV protons , 2000 .

[61]  J. Kim,et al.  High temperature fracture characteristics of a nanostructured ferritic alloy (NFA) , 2010 .

[62]  R. Chaouadi,et al.  Crack resistance behavior of ODS and standard 9%Cr-containing steels at high temperature , 2010 .

[63]  Jae-Hoon Lee,et al.  Cryomilling effect on the mechanical alloying behaviour of ferritic oxide dispersion strengthened powder with Y2O3 , 2013 .

[64]  T. Byun,et al.  Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors , 2012, Metallurgical and Materials Transactions A.

[65]  A. Pineau,et al.  High-temperature mechanical properties improvement on modified 9Cr―1Mo martensitic steel through thermomechanical treatments , 2010 .

[66]  F. Delage,et al.  Sodium fast reactor evaluation: Core materials , 2009 .

[67]  Shigeharu Ukai,et al.  R&D of oxide dispersion strengthened ferritic martensitic steels for FBR , 1998 .

[68]  K. Ichikawa,et al.  Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures , 1995, Journal of Materials Science.

[69]  E. Kenik,et al.  The effect of dose rate on the response of austenitic stainless steels to neutron radiation , 2006 .

[70]  M. Harada,et al.  Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials , 1993 .

[71]  G. Speich,et al.  Formation of Austenite During Intercritical Annealing of Dual-Phase Steels , 1981 .

[72]  G. Odette,et al.  Thermal stability of nano-structured ferritic alloy , 2008 .

[73]  Ronald L. Klueh,et al.  Cladding and duct materials for advanced nuclear recycle reactors , 2008 .

[74]  J. Kim,et al.  Tensile fracture characteristics of nanostructured ferritic alloy 14YWT , 2010 .