Illuminating synapses and circuitry in the retina

In the central nervous system, space is at a premium. This is especially true in the retina, where synapses, cells, and circuitry have evolved to maximize signal-processing capacity within a thin, optically transparent tissue. For example, at some retinal synapses, single presynaptic active zones contact multiple postsynaptic targets; some individual neurons perform completely different tasks depending on visual conditions, while others execute hundreds of circuit computations in parallel; and the retinal network adapts, at various levels, to the ever-changing visual world. Each of these features reflects efficient use of limited cellular resources to optimally encode visual information.

[1]  S. Bloomfield,et al.  Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina , 1999, Visual Neuroscience.

[2]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[3]  Jonathan B Demb,et al.  Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell , 2008, The Journal of physiology.

[4]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[5]  F. Rieke,et al.  Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision , 2008, Neuron.

[6]  J. Diamond,et al.  Vesicle depletion and synaptic depression at a mammalian ribbon synapse. , 2006, Journal of neurophysiology.

[7]  Paul R. Schrater,et al.  Within- and Cross-Modal Distance Information Disambiguate Visual Size-Change Perception , 2010, PLoS Comput. Biol..

[8]  J. E. Huettner,et al.  Activation and Desensitization of Hippocampal Kainate Receptors , 1997, The Journal of Neuroscience.

[9]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[10]  J. Diamond,et al.  Subunit- and Pathway-Specific Localization of NMDA Receptors and Scaffolding Proteins at Ganglion Cell Synapses in Rat Retina , 2008, The Journal of Neuroscience.

[11]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[12]  Fred Rieke,et al.  Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells , 2008, Nature Neuroscience.

[13]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 2. AII amacrine cells , 1991, The Journal of comparative neurology.

[14]  D. Copenhagen,et al.  Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. , 1995, The Journal of physiology.

[15]  Joshua H. Singer,et al.  Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors , 2006, Nature.

[16]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[17]  Michael J. Schachter,et al.  Dendritic Spikes Amplify the Synaptic Signal to Enhance Detection of Motion in a Simulation of the Direction-Selective Ganglion Cell , 2010, PLoS Comput. Biol..

[18]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[19]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[20]  P. Lukasiewicz,et al.  Presynaptic Inhibition Modulates Spillover, Creating Distinct Dynamic Response Ranges of Sensory Output , 2006, Neuron.

[21]  Wei Li,et al.  Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse , 2006, Neuron.

[22]  J. Diamond,et al.  BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina , 2009, Nature Neuroscience.

[23]  Stephen A. Baccus,et al.  Retinal Adaptation to Object Motion , 2007, Neuron.

[24]  F. Rieke,et al.  Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina , 2006, The Journal of Neuroscience.

[25]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[26]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[27]  R H Masland,et al.  The shape and arrangement of the cholinergic neurons in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[29]  J. Diamond,et al.  Synaptically Released Glutamate Activates Extrasynaptic NMDA Receptors on Cells in the Ganglion Cell Layer of Rat Retina , 2002, The Journal of Neuroscience.

[30]  F. Rieke,et al.  Light adaptation in cone vision involves switching between receptor and post-receptor sites , 2007, Nature.

[31]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[32]  Seunghoon Lee,et al.  The Synaptic Mechanism of Direction Selectivity in Distal Processes of Starburst Amacrine Cells , 2006, Neuron.

[33]  E. Trexler,et al.  Differential output of the high‐sensitivity rod photoreceptor: AII amacrine pathway , 2008, The Journal of comparative neurology.

[34]  Skyler L Jackman,et al.  Role of the synaptic ribbon in transmitting the cone light response , 2009, Nature Neuroscience.

[35]  Alyosha C. Molnar,et al.  Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission , 2009, Journal of Computational Neuroscience.

[36]  Zhiyin Liang,et al.  The ON Pathway Rectifies the OFF Pathway of the Mammalian Retina , 2010, The Journal of Neuroscience.

[37]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[38]  J. Diamond,et al.  Retinal Parallel Processors: More than 100 Independent Microcircuits Operate within a Single Interneuron , 2010, Neuron.

[39]  Ji-Jie Pang,et al.  Relative contributions of rod and cone bipolar cell inputs to AII amacrine cell light responses in the mouse retina , 2007, The Journal of physiology.

[40]  E. A. Schwartz,et al.  Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina , 1999, Nature.

[41]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[42]  Jonathon Shlens,et al.  High sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina , 2009, Nature Neuroscience.

[43]  F. Werblin,et al.  Inhibitory feedback shapes bipolar cell responses in the rabbit retina. , 2007, Journal of neurophysiology.

[44]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[45]  J. B. Demb,et al.  NMDA Receptor Contributions to Visual Contrast Coding , 2010, Neuron.

[46]  N M Grzywacz,et al.  Directional hyperacuity in ganglion cells of the rabbit retina , 1994, Visual Neuroscience.

[47]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[48]  J. B. Demb,et al.  Disinhibition Combines with Excitation to Extend the Operating Range of the OFF Visual Pathway in Daylight , 2008, The Journal of Neuroscience.

[49]  M. Tachibana,et al.  Excitatory Synaptic Transmission in the Inner Retina: Paired Recordings of Bipolar Cells and Neurons of the Ganglion Cell Layer , 1998, The Journal of Neuroscience.

[50]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[51]  M. Tachibana,et al.  A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement , 2001, Neuron.