Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes.

[1]  S. Ghasemi,et al.  Size effect investigation on battery performance: Comparison between micro- and nano-particles of β-Ni(OH)2 as nickel battery cathode material , 2010 .

[2]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[3]  T. Sakai,et al.  Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector , 2010 .

[4]  V. O. Sycheva,et al.  Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques , 2010 .

[5]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[6]  M. Nathan,et al.  Electroless nickel current collector for 3D-microbatteries , 2010 .

[7]  Philipp Adelhelm,et al.  Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[8]  Albert H. Zimmerman,et al.  Nickel-Hydrogen Batteries: Principles and Practice , 2009 .

[9]  T. N. Ramesh X-ray diffraction studies on the thermal decomposition mechanism of nickel hydroxide. , 2009, The journal of physical chemistry. B.

[10]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[11]  J. Xie,et al.  Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering , 2009 .

[12]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[13]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[14]  Mao-Sung Wu,et al.  Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques , 2008 .

[15]  Guangwu Yang,et al.  Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. , 2008, Chemical communications.

[16]  Mao-Sung Wu,et al.  Capacitive Behavior of Porous Nickel Oxide/Hydroxide Electrodes with Interconnected Nanoflakes Synthesized by Anodic Electrodeposition , 2008 .

[17]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[18]  A. Stein,et al.  Porous Carbon/Tin (IV) Oxide Monoliths as Anodes for Lithium-Ion Batteries , 2008 .

[19]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[20]  A. Stein,et al.  Fabrication of a Fully Infiltrated Three-Dimensional Solid-State Interpenetrating Electrochemical Cell , 2007 .

[21]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[22]  Tetsuo Sakai,et al.  LiFePO4-based electrode using micro-porous current collector for high power lithium ion battery , 2007 .

[23]  T. Sakai,et al.  High-Capacity Electric Double Layer Capacitor Using Three-Dimensional Porous Current Collector , 2007 .

[24]  Robert Furstenberg,et al.  Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals , 2007 .

[25]  T. Sakai,et al.  Nickel Substrate Having Three-Dimensional Micronetwork Structure for High-Power Nickel/Metal-Hydride Battery , 2007 .

[26]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[27]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[28]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[29]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[30]  Martha Schreiber,et al.  Current Collectors for Positive Electrodes of Lithium-Based Batteries , 2005 .

[31]  Justin C. Lytle,et al.  Effect of a Macropore Structure on Cycling Rates of LiCoO2 , 2005 .

[32]  E. Deiss Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT , 2005 .

[33]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[34]  C. Julien,et al.  XPS and Raman spectroscopic characterization of LiMn2O4 spinels , 2005 .

[35]  Feng Xu,et al.  Preparation of the Novel Nanocomposite Co(OH)2/ Ultra‐Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density , 2004 .

[36]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[37]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[38]  Yang‐Kook Sun,et al.  Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery , 2004 .

[39]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[40]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[41]  Venkat Srinivasan,et al.  Mathematical models of the nickel hydroxide active material , 2000 .

[42]  S. Passerini,et al.  Composites of V{sub 2}O{sub 5} aerogel and nickel fiber as high rate intercalation electrodes , 1999 .

[43]  J. Newman,et al.  Modeling of Nickel/Metal Hydride Batteries , 1997 .

[44]  E. Shembel’,et al.  Problems of corrosion and other electrochemical side processes in lithium chemical power sources with non-aqueous electrolytes , 1995 .

[45]  N. Kumagai,et al.  Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries , 1995 .

[46]  J. Dahn,et al.  Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures , 1993 .

[47]  R. J. Neat,et al.  Performance of lithiummanganese oxide spinel electrodes in a lithium polymer electrolyte cell , 1991 .

[48]  D. Corrigan,et al.  Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction , 1989 .

[49]  Edward J. Plichta,et al.  A rechargeable Li/LixCoO2 Cell , 1987 .

[50]  D. Tench,et al.  Electrodeposition of Conducting Transition Metal Oxide/Hydroxide Films from Aqueous Solution , 1983 .

[51]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[52]  T. Ohsaka,et al.  Electrosynthesis of Single-Crystalline MnOOH Nanorods onto Pt Electrodes Electrocatalytic Activity toward Reduction of Oxygen , 2008 .

[53]  J. Weidner,et al.  Proton Diffusion in Nickel Hydroxide: Prediction of Active Material Utilization , 1998 .

[54]  C. Delmas,et al.  Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity , 1997 .

[55]  Ralph E. White,et al.  Theoretical Analysis of the Discharge Performance of a NiOOH / H 2 Cell , 1994 .