Towards integrated tunable all-silicon free-electron light sources

[1]  T. Suhara Periodic Structures , 2018, Encyclopedic Handbook of Integrated Optics.

[2]  Steven G. Johnson,et al.  Maximal spontaneous photon emission and energy loss from free electrons , 2018, Nature Physics.

[3]  N. Zheludev,et al.  All-dielectric free-electron-driven holographic light sources , 2018, Applied Physics Letters.

[4]  Steven G. Johnson,et al.  Fundamental Limits to Near-Field Optical Response over Any Bandwidth , 2018, Physical Review X.

[5]  S. Maier,et al.  Energy-momentum cathodoluminescence spectroscopy of dielectric nanostructures , 2018 .

[6]  Xiang Wu,et al.  An all-silicon laser based on silicon nanocrystals with high optical gains. , 2018, Science bulletin.

[7]  A. Hu,et al.  Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescence , 2017, 1710.06483.

[8]  M. Soljačić,et al.  Spectral and spatial shaping of Smith-Purcell radiation , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[9]  M. Soljačić,et al.  Smith-Purcell radiation from low-energy electrons , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[10]  Fang Liu,et al.  Integrated Cherenkov radiation emitter eliminating the electron velocity threshold , 2017, Nature Photonics.

[11]  Yichen Shen,et al.  Spectrally and Spatially Resolved Smith-Purcell Radiation in Plasmonic Crystals with Short-Range Disorder , 2017 .

[12]  K. Berggren,et al.  Optical-field-controlled photoemission from plasmonic nanoparticles , 2016, Nature Physics.

[13]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[14]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[15]  A. Akinwande,et al.  Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates , 2016, Nanotechnology.

[16]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[17]  Steven G. Johnson,et al.  Shape-Independent Limits to Near-Field Radiative Heat Transfer. , 2015, Physical review letters.

[18]  Steven G. Johnson,et al.  Fundamental limits to optical response in absorptive systems. , 2015, Optics express.

[19]  Luis Fernando Velasquez-Garcia,et al.  Nanostructured ultrafast silicon-tip optical field-emitter arrays. , 2014, Nano letters.

[20]  Benjamin J. M. Brenny,et al.  Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals , 2014 .

[21]  Steven G. Johnson,et al.  Speed-of-light limitations in passive linear media , 2014, 1405.0238.

[22]  T. Feurer,et al.  High-density metallic nano-emitter arrays and their field emission characteristics , 2014, Nanotechnology.

[23]  Minghao Qi,et al.  Dielectric laser accelerators , 2013, 1309.7637.

[24]  Zhou Fang,et al.  A review of recent progress in lasers on silicon , 2013 .

[25]  F. Kärtner,et al.  Strong‐field photoemission from silicon field emitter arrays , 2013 .

[26]  Dennis W. Prather,et al.  Myths and rumours of silicon photonics , 2012, Nature Photonics.

[27]  A. Polman,et al.  Angle-resolved cathodoluminescence spectroscopy , 2011, 1107.3632.

[28]  B. McNeil,et al.  X-ray free-electron lasers , 2010 .

[29]  M. Strikhanov,et al.  Diffraction Radiation from Relativistic Particles , 2010 .

[30]  C. Ropers,et al.  Tip-enhanced strong-field photoemission. , 2010, Physical review letters.

[31]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[32]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[33]  H. Fink,et al.  Field-Emission Characteristics of Molded Molybdenum Nanotip Arrays With Stacked Collimation Gate Electrodes , 2010, IEEE Electron Device Letters.

[34]  Takashi Taniguchi,et al.  Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride , 2009 .

[35]  D P Tsai,et al.  Light well: a tunable free-electron light source on a chip. , 2009, Physical review letters.

[36]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[37]  G V Kaigala,et al.  An integrated CMOS high voltage supply for lab-on-a-chip systems. , 2008, Lab on a chip.

[38]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[39]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[40]  E. Bakkers,et al.  Position-controlled epitaxial III–V nanowires on silicon , 2006 .

[41]  M. Paniccia,et al.  Silicon photonics , 2006, IEEE Microwave Magazine.

[42]  H. Mimura,et al.  Smith-Purcell radiation from ultraviolet to infrared using a Si field emitter , 2006 .

[43]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[44]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[45]  R. Temkin,et al.  Observation of frequency-locked coherent terahertz Smith-Purcell radiation. , 2005, Physical review letters.

[46]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[47]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[48]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[49]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[50]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[51]  K. Ohtaka Smith-Purcell radiation from metallic and dielectric photonic crystals , 2001, Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557).

[52]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[53]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[54]  Akihiko Okamoto,et al.  Design and performance of traveling-wave tubes using field emitter array cathodes , 1999 .

[55]  Dorota Temple,et al.  Recent progress in field emitter array development for high performance applications , 1999 .

[56]  J. Walsh,et al.  Superradiant Smith-Purcell Emission , 1998 .

[57]  W. D. Palmer,et al.  Emission measurements and simulation of silicon field‐emitter arrays with linear planar lenses , 1996 .

[58]  S. S. Iyer,et al.  Light Emission from Silicon , 1993, Science.

[59]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[60]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[61]  A. Yariv,et al.  Spontaneous and stimulated emission from quasifree electrons , 1988 .

[62]  A. Axmann,et al.  1.54‐μm electroluminescence of erbium‐doped silicon grown by molecular beam epitaxy , 1985 .

[63]  P. M. Berg Smith–Purcell radiation from a point charge moving parallel to a reflection grating , 1973 .

[64]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[65]  Edward M. Purcell,et al.  Visible Light from Localized Surface Charges Moving across a Grating , 1953 .

[66]  A. Akinwande,et al.  Silicon Field Emitter Arrays With Current Densities Exceeding 100 A/cm2 at Gate Voltages Below 75 V , 2016, IEEE Electron Device Letters.

[67]  Tingkai Li,et al.  III-V compound semiconductors : integration with silicon-based microelectronics , 2011 .

[68]  Dominique Lemoine,et al.  Vacuum packaging at the wafer level for monolithic integration of MEMS and CMOS , 2009 .