Application of Low Melting Metals for Separation of Uranium and Zirconium in a “Fused Chloride—Liquid Alloy” System

Closeness of electrochemical properties of uranium and zirconium makes separation of these metals in pyroelectrochemical reprocessing of spent nuclear fuels a challenging task. Varying electrode material can change metals’ deposition potentials. The study was aimed at assessing the effect of the cathode material on deposition potentials of zirconium and uranium from 3LiCl–2KCl based melts. Solid (tungsten) and liquid (gallium, zinc, Ga–Zn, Ga–Sn and Ga–In alloy) working electrodes were tested at 532–637 °C. Galvanostatic cathodic polarization was employed and the applied cathodic current varied from 0.0001 to 1 A. Gallium–zinc eutectic alloy demonstrated the largest difference of zirconium and uranium deposition potentials. Zirconium/uranium separation factors were experimentally determined in a “molten salt—liquid metal” system for gallium and Ga–Zn eutectic based alloys.

[1]  V. Volkovich,et al.  Separation of uranium and zirconium in a “chloride melt – Ga–Zn eutectic alloy” system , 2020 .

[2]  V. Volkovich,et al.  Uranium reduction from chloride melts on solid and liquid metal cathodes , 2019, PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference.

[3]  V. Volkovich,et al.  Separation of Uranium and Zirconium: Electrochemical Properties of Zirconium in the 3LiCl–2KCl Melt , 2019, Russian metallurgy. Metally.

[4]  P. Souček,et al.  Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes , 2016 .

[5]  A. Osipenko,et al.  Study of the electrochemical behavior of U(III) ions on liquid Cd electrode and preparation of the U–Cd intermetallic compound in fused 3LiCl–2KCl eutectic , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[6]  V. Volkovich,et al.  An electrochemical study of uranium behaviour in LiCl-KCl-CsCl eutectic melt , 2015 .

[7]  A. Chukin,et al.  Thermodynamic properties of uranium in gallium–aluminium based alloys , 2015 .

[8]  I. Hwang,et al.  Cyclic Voltammetry on Zirconium Redox Reactions in LiCl-KCl-ZrCl4 at 500 degrees C for Electrorefining Contaminated Zircaloy-4 Cladding , 2014 .

[9]  A. Bond,et al.  Cyclic Voltammetric Experiment - Simulation Comparisons of the Complex Mechanism Associated with Electrochemical Reduction of Zr4+ in LiCl-KCl Eutectic Molten Salt , 2013 .

[10]  Min Ku Jeon,et al.  Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts , 2013 .

[11]  Jong-Hyeon Lee,et al.  Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique , 2011 .

[12]  P. Venkatesh,et al.  Electrochemical studies on the redox behaviour of zirconium in molten LiCl-KCl eutectic , 2009 .

[13]  Pavel Soucek,et al.  On the formation of U–Al alloys in the molten LiCl–KCl eutectic , 2008 .

[14]  W. Han,et al.  Electrodeposition of Li and electrochemical formation of Mg–Li alloys from the eutectic LiCl–KCl , 2008 .

[15]  P. Souček,et al.  Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes , 2007 .

[16]  Mary Fieser,et al.  Uranium(IV) chloride , 2006 .

[17]  Yoshiharu Sakamura,et al.  Zirconium Behavior in Molten LiCl-KCl Eutectic , 2004 .

[18]  G. Kipouros,et al.  Electrorefining of Zirconium Metal in Alkali Chloride and Alkali Fluoride Fused Electrolytes , 1985 .