Thermal analysis of microscale aluminum particles coated with perfluorotetradecanoic (PFTD) acid

[1]  Jianzhong Liu,et al.  Thermal decomposition and combustion characteristics of Al/AP/HTPB propellant , 2020, Journal of Thermal Analysis and Calorimetry.

[2]  E. Kemnitz,et al.  Aluminium fluoride – the strongest solid Lewis acid: structure and reactivity , 2017 .

[3]  D. Dlott,et al.  Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials. , 2016, The Review of scientific instruments.

[4]  V. Pandolfelli,et al.  AlF3 reaction mechanism and its influence on α-Al2O3 mineralization , 2016 .

[5]  M. Kubo,et al.  Tribochemical Degradation of Polytetrafluoroethylene Catalyzed by Copper and Aluminum Surfaces , 2016 .

[6]  M. Pantoya,et al.  Catalyzing aluminum particle reactivity with a fluorine oligomer surface coating for energy generating applications , 2015 .

[7]  M. Pantoya,et al.  Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels , 2012 .

[8]  C. J. Pierce,et al.  Synthesis and reactivity of aluminized fluorinated acrylic (AlFA) nanocomposites , 2012 .

[9]  Matthew M. Biss,et al.  High-speed two-camera imaging pyrometer for mapping fireball temperatures. , 2011, Applied optics.

[10]  Michael Vollmer,et al.  Infrared Thermal Imaging: Fundamentals, Research and Applications , 2010 .

[11]  C. J. Pierce,et al.  Influencing solvent miscibility and aqueous stability of aluminum nanoparticles through surface functionalization with acrylic monomers. , 2010, ACS applied materials & interfaces.

[12]  R. J. Jouet,et al.  Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies , 2009 .

[13]  Jian Kang,et al.  Influence of AlF3 and hydrothermal conditions on morphologies of α-Al2O3 , 2008 .

[14]  Dustin T. Osborne,et al.  EFFECT OF AL PARTICLE SIZE ON THE THERMAL DEGRADATION OF AL/TEFLON MIXTURES , 2007 .

[15]  R. J. Jouet,et al.  Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites , 2006 .

[16]  O. Blajiev,et al.  Interaction of anhydride and carboxylic acid compounds with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  R. Jia,et al.  Production of hydrogen peroxide from carbon monoxide, water and oxygen over alumina-supported Ni catalysts , 2004 .

[18]  D. K. Schwartz,et al.  Octadecanoic Acid Self-Assembled Monolayer Growth at Sapphire Surfaces , 2003 .

[19]  Michael R. Zachariah,et al.  Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids , 2003 .

[20]  A. Obst,et al.  A High-Speed Four-Channel Infrared Pyrometer , 2002 .

[21]  Y. Ku,et al.  The Adsorption of Fluoride Ion from Aqueous Solution by Activated Alumina , 2002 .

[22]  Richard M. Pashley,et al.  The production of stable hydrophobic surfaces by the adsorption of hydrocarbon and fluorocarbon carboxylic acids onto alumina substrates , 2001 .

[23]  R. S. Aderne,et al.  Aluminum Nitride Oxidation by Simultaneous TG and DTA , 2001 .

[24]  E. Kemnitz,et al.  Characterization of Catalytically Active Sites on Aluminum Oxides, Hydroxyfluorides, and Fluorides in Correlation with Their Catalytic Behavior. , 1995 .

[25]  E. Kemnitz,et al.  Characterization of catalytically active sites on aluminum oxides, hydroxyfluorides, and fluorides in correlation with their catalytic behavior , 1994 .

[26]  H. Saito,et al.  Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluoride , 1978 .

[27]  W. Haag,et al.  Alumina: Catalyst and Support. I. Alumina, its Intrinsic Acidity and Catalytic Activity1 , 1960 .