STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES

A fluid–structure interaction (FSI) validation study of the Micon 65/13M wind turbine with Sandia CX-100 composite blades is presented. A rotation-free isogeometric shell formulation is used to model the blade structure, while the aerodynamics formulation makes use of the FEM-based ALE-VMS method. The structural mechanics formulation is validated by means of eigenfrequency analysis of the CX-100 blade. For the coupling between the fluid and structural mechanics domains, a nonmatching discretization approach is adopted. The simulations are done at realistic wind conditions and rotor speeds. The rotor-tower interaction that influences the aerodynamic torque is captured. The computed aerodynamic torque generated by the Micon 65/13M wind turbine compares well with that obtained from on-land experimental tests.

[1]  Earl P. N. Duque,et al.  Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment , 2003 .

[2]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[3]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[6]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[7]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[8]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[9]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[10]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[11]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[12]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[13]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[14]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[15]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[18]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[19]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[20]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[21]  Piergiovanni Marzocca,et al.  Numerical validation of a finite element thin‐walled beam model of a composite wind turbine blade , 2012 .

[22]  Spyros G. Voutsinas,et al.  STATE OF THE ART IN WIND TURBINE AERODYNAMICS AND AEROELASTICITY , 2006 .

[23]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[24]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[25]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[26]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[27]  C. Kong,et al.  Structural investigation of composite wind turbine blade considering various load cases and fatigue life , 2005 .

[28]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[29]  Yuwei Li,et al.  Dynamic overset CFD simulations of wind turbine aerodynamics , 2012 .

[30]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[31]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[32]  Yuri Bazilevs,et al.  A computational procedure for prebending of wind turbine blades , 2012 .

[33]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[34]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[35]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[36]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[37]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[38]  A. Le Pape,et al.  3D Navier–Stokes computations of a stall‐regulated wind turbine , 2004 .

[39]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[40]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[41]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[42]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[43]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[44]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[45]  Frank Scheurich,et al.  Modelling the aerodynamics of vertical-axis wind turbines , 2011 .

[46]  Niels N. Sørensen,et al.  Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80-by-120 wind tunnel , 2002 .

[47]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[48]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[49]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[50]  Mark A. Rumsey,et al.  Modal Analysis of CX-100 Rotor Blade and Micon 65/13 Wind Turbine , 2011 .

[51]  F. M. Jensen,et al.  Structural testing and numerical simulation of a 34 m composite wind turbine blade , 2006 .

[52]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[53]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[54]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[55]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[56]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[57]  George N. Barakos,et al.  Development and Validation of a CFD Technique for the Aerodynamic Analysis of HAWT , 2009 .

[58]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[59]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[60]  Andreas Bechmann,et al.  CFD simulations of the MEXICO rotor , 2011 .

[61]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[62]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[63]  Peter Hansbo,et al.  Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems , 2003 .

[64]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[65]  Niels N. Sørensen,et al.  Computation of the National Renewable Energy Laboratory Phase‐VI rotor in pitch motion during standstill , 2012 .

[66]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[67]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[68]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[69]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[70]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[71]  Jeppe Johansen,et al.  Wind turbine rotor-tower interaction using an incompressible overset grid method , 2009 .

[72]  C. P. van Dam,et al.  Computational aerodynamic analysis of a blunt trailing‐edge airfoil modification to the NREL Phase VI rotor , 2007 .

[73]  Erik Lund,et al.  On structural optimization of composite shell structures using a discrete constitutive parametrization , 2004 .