Direct molecular simulation of the Grüneisen parameter and density scaling exponent in fluid systems

Abstract Direct molecular-simulation results of the thermodynamic Gruneisen parameter, γG, and the density scaling exponent, γ, are reported for the Lennard-Jones and the Gaussian core model potential in extended fluid-phase regions, and are compared with results calculated from equations of state. The direct molecular simulation method is based on the calculation of so-called phase-space functions and allows, in principle, the investigation of any thermodynamic property without any restrictive approximation. The Gruneisen parameter and the density scaling exponent are key quantities in the theory of strongly correlating liquids. Therefore, we paid special attention on the relationship between γG and γ for the Lennard-Jones system as a strongly correlating fluid. Because the Gruneisen parameter can be related to experimentally accessible thermodynamic properties, we analysed in detail the decomposition of γG into the thermal expansion coefficient, the isothermal compressibility, the isochoric heat capacity, and the thermal pressure coefficient. Moreover, we show that a predicted effective density scaling exponent of γ ≈ 6 for the Lennard-Jones fluid can be found close to the triple point of the system. The investigation of γG for the Gaussian core model, which is not a strongly correlating fluid, revealed anomalous behaviour at higher densities with negative values of γG.

[1]  R. Lustig Thermodynamics of liquid oxygen from molecular dynamics simulations , 1994 .

[2]  R. Lustig Thermodynamics of Fluid Sulfur Hexafluoride from Molecular Dynamics Simulations , 1995 .

[3]  W. Krätschmer,et al.  Superconductivity and NMR investigations of KTl1.5-doped C60 , 1991 .

[4]  F. Stillinger,et al.  Negative thermal expansion in the Gaussian core model , 1997 .

[5]  P. Mausbach,et al.  Transport Anomalies in the Gaussian Core Model Fluid , 2009 .

[6]  Wei Shi,et al.  Histogram reweighting and finite-size scaling study of the Lennard–Jones fluids , 2001 .

[7]  W. Steele,et al.  Specific heats for simple molecular fluids from molecular dynamics simulations , 1989 .

[8]  P. Mausbach,et al.  Static and dynamic anomalies in the Gaussian core model liquid , 2006 .

[9]  Stephan Kabelac,et al.  Pressure derivatives in the classical molecular-dynamics ensemble. , 2006, The Journal of chemical physics.

[10]  C. N. Likos,et al.  Fluid and solid phases of the Gaussian core model , 2000 .

[11]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. III. Numerical results , 1994 .

[12]  J. Shaner Grüneisen gamma and acoustic velocity for soft sphere fluids , 1988 .

[13]  Christos N. Likos,et al.  EFFECTIVE INTERACTIONS IN SOFT CONDENSED MATTER PHYSICS , 2001 .

[14]  T. Schrøder,et al.  Statistical mechanics of Roskilde liquids: configurational adiabats, specific heat contours, and density dependence of the scaling exponent. , 2013, The Journal of chemical physics.

[15]  R. Span,et al.  Communication: Fundamental equation of state correlation with hybrid data sets. , 2013, The Journal of chemical physics.

[16]  J. Feldman,et al.  Scaling of the Local Dynamics and the Intermolecular Potential , 2006, cond-mat/0602132.

[17]  U. Mohanty,et al.  Thermodynamic interpretation of the scaling of the dynamics of supercooled liquids. , 2006, The Journal of chemical physics.

[18]  R. Lustig,et al.  Thermodynamics of fluid benzene from molecular dynamics simulations , 2002 .

[19]  Rolf Lustig,et al.  Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule–Thomson coefficient , 2011 .

[20]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. II. Application to computer simulation , 1994 .

[21]  R. Sadus,et al.  Thermodynamic properties in the molecular dynamics ensemble applied to the gaussian core model fluid. , 2011, The Journal of chemical physics.

[22]  R. Sadus,et al.  Solid-liquid phase equilibria of the Gaussian core model fluid. , 2009, The Journal of chemical physics.

[23]  B. K. Sharma Volume dependence of thermodynamic Grüneisen parameter of fluorocarbon fluids , 1983 .

[24]  Rolf Lustig,et al.  Microcanonical Monte Carlo simulation of thermodynamic properties , 1998 .

[25]  Reinhard Boehler,et al.  Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure , 1983 .

[26]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. I. Fundamentals , 1994 .

[27]  Reinhard Boehler,et al.  Pressure dependence of the thermodynamical Grüneisen parameter of fluids , 1977 .

[28]  Ivo Nezbeda,et al.  The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state , 1994 .

[29]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[30]  L. Knopoff,et al.  Pseudo-Grüneisen Parameter for Liquids , 1970 .

[31]  L. Rebelo,et al.  On the pseudo-Grüneisen parameters of molecular liquids , 1992 .

[32]  Ali Morsali,et al.  The pseudo Grüneisen parameter in dense fluids from distribution functions , 2011 .

[33]  P. Mausbach,et al.  Thermodynamic excess properties and their scaling behavior for the Gaussian core model fluid , 2012 .

[34]  S. K. Kor,et al.  Pseudo-Grüneisen parameter for liquid argon , 1972 .

[35]  Roland Span,et al.  An accurate Van der Waals-type equation of state for the Lennard-Jones fluid , 1996 .

[36]  Guobang Chen,et al.  The Grüneisen Parameter in Fluids , 1984 .

[37]  D. J. Tildesley,et al.  Equation of state for the Lennard-Jones fluid , 1979 .

[38]  Rolf Lustig,et al.  Statistical analogues for fundamental equation of state derivatives , 2012 .

[39]  Peter Mausbach,et al.  Riemannian geometry study of vapor-liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  H.-O. May,et al.  Fluid properties from equations of state compared with direct molecular simulations for the Lennard-Jones system , 2012 .

[41]  F. Stillinger Phase transitions in the Gaussian core system , 1976 .

[42]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[43]  CM Roland,et al.  Entropy basis for the thermodynamic scaling of the dynamics of o-terphenyl , 2007 .