Interface Modification to Improve Hole‐Injection Properties in Organic Electronic Devices

The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole-conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin-coating poly(9,9-dioctyl-fluorene-co-N- (4-butylphenyl)-diphenylamine) (TFB) on top of the poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole-injection energy barriers, bulk charge-transport properties, and current–voltage characteristics observed in a representative PFO-based (PFO: poly(9,9-dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole-injection properties of organic electronic devices.

[1]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[2]  Donal D. C. Bradley,et al.  Ohmic hole injection in poly(9,9-dioctylfluorene) polymer light-emitting diodes , 2003 .

[3]  Paul Ernest Parris,et al.  Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials , 1998 .

[4]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[5]  F. So,et al.  The effect of interfacial layer on the performance of organic light-emitting diodes , 2005 .

[6]  A. J. Heeger,et al.  Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity , 1994 .

[7]  Richard H. Friend,et al.  Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes , 2005 .

[8]  Donal D. C. Bradley,et al.  Electroluminescent polymers: materials, physics and device engineering , 1996 .

[9]  Donal D. C. Bradley,et al.  Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene) , 1998 .

[10]  Franco Cacialli,et al.  Molecular-scale interface engineering for polymer light-emitting diodes , 2000, Nature.

[11]  Jorge Morgado,et al.  Improved efficiency of light-emitting diodes based on polyfluorene blends upon insertion of a poly(p-phenylene vinylene) electron- confinement layer , 2002 .

[12]  George G. Malliaras,et al.  Hole limited recombination in polymer light-emitting diodes , 1999 .

[13]  R. Friend,et al.  Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer , 1999 .

[14]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[15]  Dieter Neher,et al.  Highly Efficient Single‐Layer Polymer Electrophosphorescent Devices , 2004 .

[16]  George G. Malliaras,et al.  The roles of injection and mobility in organic light emitting diodes , 1998 .

[17]  A. J. Heeger,et al.  Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency , 1994 .

[18]  Jenny Nelson Organic photovoltaic films , 2002 .

[19]  Michio Matsumura,et al.  Lowering of operational voltage of organic electroluminescent devices by coating indium-tin-oxide electrodes with a thin CuOx layer , 2002 .

[20]  G. Malliaras,et al.  Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes , 1998 .

[21]  Andrew J. deMello,et al.  Role of electron injection in polyfluorene-based light emitting diodes containing PEDOT:PSS , 2005 .

[22]  J. C. Scott,et al.  Degradation and failure of MEH‐PPV light‐emitting diodes , 1996 .

[23]  Richard L. Martin,et al.  CONTROLLING CHARGE INJECTION IN ORGANIC ELECTRONIC DEVICES USING SELF-ASSEMBLED MONOLAYERS , 1997 .

[24]  P. Blom,et al.  Dispersive hole transport in poly(p-phenylene vinylene) , 1998 .

[25]  Donal D. C. Bradley,et al.  Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene , 2005 .

[26]  Franky So,et al.  Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer , 2005 .

[27]  Donal D. C. Bradley,et al.  Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/Methanofullerene Blends , 2005 .

[28]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[29]  Richard H. Friend,et al.  Transient electroluminescence of polymer light emitting diodes using electrical pulses , 1999 .

[30]  Donal D. C. Bradley,et al.  High Mobility Hole Transport Fluorene‐Triarylamine Copolymers , 1999 .

[31]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[32]  T. Marks,et al.  Realization of high-efficiency/high-luminance small-molecule organic light-emitting diodes: synergistic effects of siloxane anode functionalization/hole-injection layers, and hole/exciton-blocking/electron-transport layers , 2003 .

[33]  Heinz-Georg Nothofer,et al.  Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes , 2000, Nature.

[34]  D. A. Fleming,et al.  An improved secondary electron flood helps control ion implant charge , 2000 .

[35]  S. Y. Kim,et al.  Enhancement of hole injection using iridium-oxide-coated indium tin oxide anodes in organic light-emitting diodes , 2005 .

[36]  Maxim Shkunov,et al.  High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene) , 2004 .

[37]  Yang Yang,et al.  Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification , 2003 .

[38]  Donal D. C. Bradley,et al.  Nondispersive hole transport in an electroluminescent polyfluorene , 1998 .