Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

[1]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[2]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[3]  E. Sanehira,et al.  High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic-Inorganic Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[4]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[5]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[6]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[7]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[8]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[9]  Kai Zhu,et al.  Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells , 2014 .

[10]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[11]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[12]  J. Berry,et al.  Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes , 2016 .

[13]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[14]  L. Wheeler,et al.  Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution , 2016 .

[15]  Nakita K. Noel,et al.  Investigating the Role of 4‐Tert Butylpyridine in Perovskite Solar Cells , 2017 .

[16]  K. Gödel,et al.  Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells , 2016 .

[17]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[18]  P. Bruce,et al.  Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskites , 2017 .

[19]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[20]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[21]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[22]  P A Midgley,et al.  Gold and iodine diffusion in large area perovskite solar cells under illumination. , 2017, Nanoscale.

[23]  F. Stevie Secondary Ion Mass Spectrometry: Applications for Depth Profiling and Surface Characterization , 2016 .

[24]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[25]  Rachel C. Kurchin,et al.  Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations , 2017 .

[26]  Dong Hoe Kim,et al.  Extrinsic ion migration in perovskite solar cells , 2017 .

[27]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[28]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[29]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[30]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[31]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[32]  A. Zakhidov Role of Interface in Stability of Perovskite Solar Cells. , 2016 .

[33]  Henry J. Snaith,et al.  Research Update: Strategies for improving the stability of perovskite solar cells , 2016 .

[34]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[35]  Manfred Martin,et al.  Probing Diffusion Kinetics with Secondary Ion Mass Spectrometry , 2009 .

[36]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[37]  C. W. Magee,et al.  Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis , 1989 .

[38]  B. Rand,et al.  Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices , 2016 .

[39]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[40]  Philip Schulz,et al.  Defect Tolerance in Methylammonium Lead Triiodide Perovskite , 2016 .

[41]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[42]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[43]  Nakita K. Noel,et al.  Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[44]  S. Haque,et al.  Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells , 2017, Nature Communications.

[45]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[46]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[47]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.