VMF-SNE: Embedding for spherical data

T-SNE is a well-known approach to embedding high-dimensional data. The basic assumption of t-SNE is that the data are non-constrained in the Euclidean space and the local proximity can be modelled by Gaussian distributions. This assumption does not hold for a wide range of data types in practical applications, for instance spherical data for which the local proximity is better modelled by the von Mises-Fisher (vMF) distribution instead of the Gaussian. This paper presents a vMF-SNE embedding algorithm to embed spherical data. An iterative process is derived to produce an efficient embedding. The results on a simulation data set demonstrated that vMF-SNE produces better embeddings than t-SNE for spherical data.

[1]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[2]  R. Mooney,et al.  Impact of Similarity Measures on Web-page Clustering , 2000 .

[3]  Bryan Silverthorn,et al.  Spherical Topic Models , 2010, ICML.

[4]  Carla E. Brodley,et al.  Proceedings of the twenty-first international conference on Machine learning , 2004, International Conference on Machine Learning.

[5]  Hady Wirawan Lauw,et al.  Semantic visualization for spherical representation , 2014, KDD.

[6]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[7]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[8]  Thomas L. Griffiths,et al.  Parametric Embedding for Class Visualization , 2004, Neural Computation.

[9]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[10]  Geoffrey E. Hinton,et al.  Visualizing Similarity Data with a Mixture of Maps , 2007, AISTATS.

[11]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[12]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[13]  I. Dhillon,et al.  Modeling Data using Directional Distributions , 2003 .

[14]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[15]  Christophe Ley,et al.  Modern Directional Statistics , 2017 .

[16]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[17]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[18]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[19]  Joshua B. Tenenbaum,et al.  Mapping a Manifold of Perceptual Observations , 1997, NIPS.

[20]  Le Song,et al.  Colored Maximum Variance Unfolding , 2007, NIPS.

[21]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[22]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[23]  Patrick Kenny,et al.  Front-End Factor Analysis for Speaker Verification , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[24]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.