Reversible electronic logic using switches

Two methods of using switches to implement reversible computations are discussed. The first method has an energy dissipation which is proportional to the square of the error in the voltage, while the second method has an energy dissipation which can in principle be reduced indefinitely by slowing the speed of computation. The first method is basically an extension to 'pass logic' which has been previously used with both nMOS (hot clock nMOS) and CMOS transmission gates to achieve low energy dissipation. The second method is a novel thermodynamically reversible logic system based on CCD-like operations which switches charge packets in a reversible fashion to achieve low energy dissipation.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Claude E. Shannon,et al.  A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.

[3]  Franz E. Hohn,et al.  Boolean matrices and the design of combinational relay switching circuits , 1955 .

[4]  R. L. Wigington A New Concept in Computing , 1959, Proceedings of the IRE.

[5]  R. Lindner Semiconductor surface varactor , 1962 .

[6]  A. Goetzberger,et al.  Ideal mos curves for silicon , 1966 .

[7]  K. Teer,et al.  Bucket-brigade electronics: new possibilities for delay, time-axis conversion, and scanning , 1969 .

[8]  J. S. Dowker,et al.  Fundamentals of Physics , 1970, Nature.

[9]  G. E. Smith,et al.  Charge coupled semiconductor devices , 1970, Bell Syst. Tech. J..

[10]  M. F. Tompsett,et al.  Charge Transfer Devices , 1972 .

[11]  M. F. Tompsett,et al.  A simple charge regenerator for use with charge-transfer devices and the design of functional logic arrays , 1972 .

[12]  Joseph L. Mundy,et al.  Eliminating threshold losses in MOS circuits by bootstrapping using varactor coupling , 1972 .

[13]  C.A.T. Salama,et al.  A charge-transfer-device logic cell , 1974 .

[14]  R. A. Allen,et al.  Digital charge-coupled logic (DCCL) , 1977 .

[15]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[16]  F. J. Himpsel,et al.  Quantum photoyield of diamond(111)—A stable negative-affinity emitter , 1979 .

[17]  J. H. Montgomery,et al.  Basic c.c.d. logic gates , 1980 .

[18]  Andrew Lewis Ressler The design of a conservative logic computer and a graphical editor simulator , 1981 .

[19]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[20]  J. G. Nash Combinatorial digital logic using charge-coupled devices , 1982 .

[21]  K. K. Likharev,et al.  Classical and quantum limitations on energy consumption in computation , 1982 .

[22]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[23]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[24]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[25]  Min-You Wu,et al.  Invited paper A unified theory for MOS circuit design—switching network logic , 1985 .

[26]  Sergey V. Rylov,et al.  Reversible conveyer computation in array of parametric quantrons , 1985 .

[27]  K. Eric Drexler,et al.  Engines of Creation , 1986 .

[28]  C.A.T. Salama,et al.  CMOS differential pass-transistor logic design , 1987 .

[29]  David Halliday,et al.  Selected solutions for Fundamentals of physics, third edition, third edition extended, [by] David Halliday, Robert Resnick , 1988 .

[30]  Lawrence Snyder,et al.  The role of energy in vlsi computations , 1988 .

[31]  Rolf Landauer,et al.  Dissipation and noise immunity in computation and communication , 1988, Nature.

[32]  Akhilesh Tyagi Energy-Time Trade-offs in VLSI Computation , 1989, FSTTCS.

[33]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[34]  A Small Revolution Gets Under Way: The 1990s will reveal a different side of miniaturization, one in which shrinking the size of materials and devices means not just a quantitative change but qualitative ones as well. , 1990, Science.

[35]  Charles G. Sodini,et al.  CCD/CMOS process for integrated image acquisition and early vision signal processing , 1990, Other Conferences.

[36]  S. Sze High-speed semiconductor devices , 1990 .

[37]  J.-I. Song,et al.  Two-dimensional electron gas charged-coupled devices (2DEG-CCD's) , 1991 .

[38]  John C. Geary,et al.  Performance tests of large CCDs , 1991, Medical Imaging.

[39]  Gloria Kissin Upper and lower bounds on switching energy in VLSI , 1991, JACM.

[40]  K. Hess,et al.  Approaching the quantum limit , 1992, IEEE Spectrum.

[41]  J. S. Hall,et al.  An Electroid Switching Model For Reversible Computer Architectures , 1992, Workshop on Physics and Computation.

[42]  J. G. Koller,et al.  Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information , 1992, Workshop on Physics and Computation.

[43]  Single atoms as transistors , 1992, Nature.

[44]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[45]  C. Pegrum Natural Josephson junctions , 1992, Nature.

[46]  Diamond thin-film recessed gate field-effect transistors fabricated by electron cyclotron resonance plasma etching , 1992, IEEE Electron Device Letters.

[47]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[48]  W. Hamburgen,et al.  Packaging a 150-W bipolar ECL microprocessor , 1992, 1992 Proceedings 42nd Electronic Components & Technology Conference.

[49]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[50]  Ralph C. Merkle,et al.  A proof about molecular bearings , 1993 .

[51]  J. Storrs,et al.  An Electroid Switching Model for Reversible Computer Architectures , 1993 .

[52]  Ralph C. Merkle,et al.  Two types of mechanical reversible logic , 1993 .

[53]  IEEE Transactions on Magnetics , 2022 .