Multi-Sensor Data Fusion for Modeling African Palm in the Ecuadorian Amazon

African oil palm ( Elaeis guinensis) is the most productive oil seed. Globally, the oil palm industry plans to double the area under cultivation to meet growing demands for both vegetable oils and biodiesel. Accurate assessment and monitoring of African palm extensification and intensification for both development and sustainability is crucial given that these crops are replacing the natural high-biodiversity forests as well as local subsistence agriculture. Using a simultaneous collection of RADARSAT synthetic aperture radar (SAR) and ground based digital video, we describe and model the spatial distribution of African palm and explore its lifecycle placing it in the regional ecological context of the Ecuadorian, Amazon. We evaluate the strengths and limitations of integrating RADARSAT texture information, Landsat ETM� , and digital video data to distinguish African oil palm plantations from other land-use and land-cover (LULC) categories. The grey-level co-occurrence matrix (GLCM) and a separate hybrid classification approach using a concatenation of SAR-optical products were tested. A significant improvement in the classification accuracy of African palm in the context of the Ecuadorian Amazon was obtained through the fusion of optical and RADARSAT texture measures as compared to single sensor

[1]  M. Fergusson,et al.  Energy from biomass in the UK: sources, processes and biodiversity implications , 2006 .

[2]  Carol J. Pierce Colfer,et al.  Impacts of land use and fire on the loss and degradation of lowland forest in 1983-2000 in East Kutai District, East Kalimantan, Indonesia , 2006 .

[3]  Paul F. Donald,et al.  Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand , 2006 .

[4]  J. Messina,et al.  Dynamic Spatial Simulation Modeling of the Population — Environment Matrix in the Ecuadorian Amazon , 2005 .

[5]  Jinfei Wang,et al.  Deriving terrain and textural information from stereo RADARSAT data for mountainous land cover mapping , 2005 .

[6]  J. Qi,et al.  An assessment of africover and GLC2000 using general agreement and videography techniques , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[7]  T. S. Hansen SPATIO-TEMPORAL ASPECTS OF LAND USE AND LAND COVER CHANGES IN THE NIAH CATCHMENT, SARAWAK, MALAYSIA , 2005 .

[8]  Barry Haack,et al.  Radar spatial considerations for land cover extraction , 2005 .

[9]  B. Griscom,et al.  Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data , 2004 .

[10]  R. Congalton Putting the Map Back in Map Accuracy Assessment , 2004 .

[11]  Ricardo Cunha da Costa,et al.  Potential for producing bio-fuel in the Amazon deforested areas. , 2004 .

[12]  Wei Gao,et al.  Synergy of optical and radar remote sensing in agricultural applications , 2004, SPIE Optics + Photonics.

[13]  H. D. Franqueville OIL PALM BUD ROT IN LATIN AMERICA , 2003, Experimental Agriculture.

[14]  N. Leader‐Williams,et al.  Habitat destruction and poaching threaten the Sumatran tiger in Kerinci Seblat National Park, Sumatra , 2003, Oryx.

[15]  Jinfei Wang,et al.  Texture evaluation of RADARSAT imagery for wetland mapping , 2002 .

[16]  Floyd M. Henderson,et al.  EVALUATION OF SAR-OPTICAL IMAGERY SYNTHESIS TECHNIQUES IN A COMPLEX COASTAL ECOSYSTEM , 2002 .

[17]  Barry Haack,et al.  Fusion of Radar and Optical Data for Land Cover Mapping , 2002 .

[18]  Emmanuel Tonye,et al.  Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images , 2002 .

[19]  John W. Holt,et al.  Geocoded digital videography for validation of land cover mapping in the Amazon basin , 2002 .

[20]  Julia Mcmorrow,et al.  Linear regression modelling for the estimation of oil palm age from Landsat TM , 2001 .

[21]  Barry Haack,et al.  Integrating multisensor data and RADAR texture measures for land cover mapping , 2000 .

[22]  P. Treitz,et al.  Agricultural Crop Classification Using SAR Tone and Texture Statistics , 2000 .

[23]  T. S. Prasad,et al.  Texture based classification of multidate SAR images ‐ a case study , 1998 .

[24]  Siamak Khorram,et al.  The effects of image misregistration on the accuracy of remotely sensed change detection , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[26]  B. Markham,et al.  Radiometric Calibration of Landsat , 1997 .

[27]  Francisco J Pichon,et al.  Colonist Land‐Allocation Decisions, Land Use, and Deforestation in the Ecuadorian Amazon Frontier , 1997, Economic Development and Cultural Change.

[28]  M. Padmavathi,et al.  Studies on microwave remote sensing data in conjunction with optical data for land use/land cover mapping and assessment , 1996 .

[29]  Å. Rosenqvist,et al.  Evaluation of JERS-1, ERS-1 and Almaz SAR backscatter for rubber and oil palm stands in West Malaysia , 1996 .

[30]  D. He,et al.  Evaluation of textural and multipolarization radar features for crop classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[31]  T. Rudel,et al.  Asia-Pacific Symposium on Mangrove Ecosystems , 1994, Biodiversity & Conservation.

[32]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[33]  P. Deschamps,et al.  Description of a computer code to simulate the satellite signal in the solar spectrum : the 5S code , 1990 .

[34]  R. J. Brown,et al.  Sar Image Classification of Agricultural Targets Using First- and Second-Order Statistics , 1987 .

[35]  Anita Tailor,et al.  Introductory digital image processing: a remote sensing perspective: Jensen, J R Prentice-Hall, Englewood Cliffs, NJ, USA (1986) £51.30 pp 392 , 1986 .

[36]  F. Ulaby,et al.  Textural Infornation in SAR Images , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[37]  David L. Toll,et al.  Analysis of digital LANDSAT MSS and SEASAT SAR data for use in discriminating land cover at the urban fringe of Denver, Colorado , 1985 .

[38]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[40]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[41]  M. Schaepman,et al.  Retrieving sup-pixel land cover composition through an effective integration of the spatial, spectral, and temporal dimensions of MERIS imagery , 2005 .

[42]  S. Franklin Using spatial Co-occurrence texture to increase forest structure and species composition classification accuracy , 2001 .

[43]  Barry Haack,et al.  Radar and Optical Data Integration for Land-Use/Land-Cover Mapping , 2000 .

[44]  Rodrigo Sierra,et al.  Dynamics and patterns of deforestation in the western Amazon: the Napo deforestation front, 1986–1996 , 2000 .

[45]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[46]  J. Caliman,et al.  Spot image as a visual tool to assess sanitary, nutrient and general status of estate oil palm plantation , 1995 .

[47]  D. Barber,et al.  SAR sea ice discrimination using texture statistics : a multivariate approach , 1991 .

[48]  B. Perthuis Búsqueda de la etiología de la Pudrición de cogollo en el Ecuador oriental , 1991 .

[49]  A. U. Lubis,et al.  Preliminary assessment of the possibilities of using remote sensing to study the running of an oil palm plantation in North Sumatra. , 1990 .

[50]  A. U. Lubis,et al.  A preliminary assessment of the possibilities of using spatial remote sensing to study developments on an oil palm plantation in north Sumatra. , 1990 .

[51]  Antonio Guerra de la Espriella Palma africana : El nuevo cultivo Colombiano , 1984 .

[52]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.