Whole-genome sequence of synthetically derived Brassica napus inbred cultivar Da-Ae

Abstract Brassica napus, a globally important oilseed crop, is an allotetraploid hybrid species with two subgenomes originating from Brassica rapa and Brassica oleracea. The presence of two highly similar subgenomes has made the assembly of a complete draft genome challenging and has also resulted in natural homoeologous exchanges between the genomes, resulting in variations in gene copy number, which further complicates assigning sequences to correct chromosomes. Despite these challenges, high-quality draft genomes of this species have been released. Using third generation sequencing and assembly technologies, we generated a new genome assembly for the synthetic B. napus cultivar Da-Ae. Through the use of long reads, linked-reads, and Hi-C proximity data, we assembled a new draft genome that provides a high-quality reference genome of a synthetic B. napus. In addition, we identified potential hotspots of homoeologous exchange between subgenomes within Da-Ae, based on their presence in other independently derived lines. The occurrence of these hotspots may provide insight into the genetic rearrangements required for B. napus to be viable following the hybridization of B. rapa and B. oleracea.

[1]  B. Cullis,et al.  Multienvironment QTL analysis delineates a major locus associated with homoeologous exchanges for water‐use efficiency and seed yield in canola , 2022, Plant, cell & environment.

[2]  G. Trotoux,et al.  Epigenomic and structural events preclude recombination in Brassica napus. , 2022, The New phytologist.

[3]  M. Goel,et al.  plotsr: visualizing structural similarities and rearrangements between multiple genomes , 2022, bioRxiv.

[4]  P. Wincker,et al.  Sequencing and Chromosome-Scale Assembly of Plant Genomes, Brassica rapa as a Use Case , 2021, Biology.

[5]  G. Trotoux,et al.  Untangling structural factors driving genome stabilization in nascent Brassica napus allopolyploids. , 2021, The New phytologist.

[6]  J. Pires,et al.  Chromosome inheritance and meiotic stability in allopolyploid Brassica napus , 2020, G3.

[7]  I. Parkin,et al.  A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus , 2020, The New phytologist.

[8]  Corinne Da Silva,et al.  Long-read assembly of the Brassica napus reference genome Darmor-bzh , 2020, bioRxiv.

[9]  R. Snowdon,et al.  Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus , 2020, Frontiers in Plant Science.

[10]  Qingyong Yang,et al.  Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus , 2020, Nature Plants.

[11]  Erez Lieberman Aiden,et al.  The genome sequence of segmental allotetraploid peanut Arachis hypogaea , 2019, Nature Genetics.

[12]  R. Michelmore,et al.  Integrated QTL and eQTL Mapping Provides Insights and Candidate Genes for Fatty Acid Composition, Flowering Time, and Growth Traits in a F2 Population of a Novel Synthetic Allopolyploid Brassica napus , 2018, Front. Plant Sci..

[13]  F. Denoeud,et al.  Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps , 2018, Nature Plants.

[14]  Wayne E. Clarke,et al.  Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a Genome-Wide SNP Array , 2018, G3: Genes, Genomes, Genetics.

[15]  C. K. Chan,et al.  Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus , 2018, Plant biotechnology journal.

[16]  Adam M. Phillippy,et al.  MUMmer4: A fast and versatile genome alignment system , 2018, PLoS Comput. Biol..

[17]  D. Charif,et al.  Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. , 2018, The New phytologist.

[18]  R. Snowdon,et al.  Surviving a Genome Collision: Genomic Signatures of Allopolyploidization in the Recent Crop Species Brassica napus , 2017, The plant genome.

[19]  Helga Thorvaldsdóttir,et al.  Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data , 2017, bioRxiv.

[20]  C. K. Chan,et al.  Assembly and comparison of two closely related Brassica napus genomes , 2017, Plant biotechnology journal.

[21]  R. Snowdon,et al.  Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus , 2017, Plant biotechnology journal.

[22]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[23]  N. Weisenfeld,et al.  Direct determination of diploid genome sequences , 2016, bioRxiv.

[24]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[25]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[26]  F. Chen,et al.  High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L. , 2015, Front. Plant Sci..

[27]  Emily M. Strait,et al.  The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome , 2015, Genesis.

[28]  M. Yandell,et al.  Genome Annotation and Curation Using MAKER and MAKER‐P , 2014, Current protocols in bioinformatics.

[29]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[30]  Corinne Da Silva,et al.  Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome , 2014, Science.

[31]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[32]  Carolyn J. Lawrence-Dill,et al.  MAKER-P: A Tool Kit for the Rapid Creation, Management, and Quality Control of Plant Genome Annotations1[W][OPEN] , 2013, Plant Physiology.

[33]  Michael Ott,et al.  De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity , 2013 .

[34]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[35]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[36]  Xiaowu Wang,et al.  BRAD, the genetics and genomics database for Brassica plants , 2011, BMC Plant Biology.

[37]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[38]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[39]  J. Pires,et al.  Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus , 2011, Proceedings of the National Academy of Sciences.

[40]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[41]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[42]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[43]  Sofia M. C. Robb,et al.  MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.

[44]  J. Pires,et al.  Genomic Changes in Resynthesized Brassica napus and Their Effect on Gene Expression and Phenotype[W][OA] , 2007, The Plant Cell Online.

[45]  J. Udall,et al.  Detection of Chromosomal Rearrangements Derived From Homeologous Recombination in Four Mapping Populations of Brassica napus L. , 2005, Genetics.

[46]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[47]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[48]  Nu Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. , 1935 .