Quantum metrology and estimation of Unruh effect

We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process.

[1]  Jing Liu,et al.  Phase-matching condition for enhancement of phase sensitivity in quantum metrology , 2013, 1308.4799.

[2]  E Solano,et al.  Relativity and lorentz invariance of entanglement distillability. , 2006, Physical review letters.

[3]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[4]  Pisin Chen,et al.  Testing Unruh Radiation with Ultraintense Lasers , 1997 .

[5]  R. Wald Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[6]  T. G. Downes,et al.  Entangling moving cavities in noninertial frames. , 2010, Physical review letters.

[7]  Jieci Wang,et al.  Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime , 2009, 0905.3430.

[8]  Heng Fan,et al.  Quantum discord and measurement-induced disturbance in the background of dilaton black holes , 2014 .

[9]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[10]  Xing Xiao,et al.  Quantum Fisher information in noninertial frames , 2014, 1401.0596.

[11]  Zehua Tian,et al.  Nonlocality and Entanglement via the Unruh effect , 2012, 1301.5987.

[12]  Valentina Baccetti,et al.  Testing the effects of gravity and motion on quantum entanglement in space-based experiments , 2013, New Journal of Physics.

[13]  R. Serra,et al.  Sudden change in quantum and classical correlations and the Unruh effect , 2010, 1003.4477.

[14]  R. Penrose,et al.  Two-spinor calculus and relativistic fields , 1984 .

[15]  A. Pourkabirian,et al.  Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.

[16]  Dionigi M T Benincasa,et al.  Quantum information processing and relativistic quantum fields , 2012, 1206.5205.

[17]  Gerardo Adesso,et al.  Optimal quantum estimation of the Unruh-Hawking effect. , 2010, Physical review letters.

[18]  R. Penrose,et al.  Spinors and Space‐Time, Volume I: Two‐Spinor Calculus and Relativistic Fields , 1986 .

[19]  David Edward Bruschi,et al.  Quantum metrology for relativistic quantum fields , 2013, 1312.5707.

[20]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[21]  G J Milburn,et al.  Teleportation with a uniformly accelerated partner. , 2003, Physical review letters.

[22]  Gerardo Adesso,et al.  Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies , 2013, Scientific Reports.

[23]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[24]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[25]  Atsushi Higuchi,et al.  The Unruh effect and its applications , 2007, 0710.5373.

[26]  Li Li,et al.  Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[27]  Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes , 2014, CLEO 2014.

[28]  R. Mann,et al.  Entanglement dynamics between inertial and non-uniformly accelerated detectors , 2011, 1108.3377.

[29]  P. Kok,et al.  Parameter estimation using NOON states over a relativistic quantum channel , 2013, 1306.3144.

[30]  W. Unruh,et al.  What happens when an accelerating observer detects a Rindler particle , 1984 .

[31]  P. Kok,et al.  Gravitational decoherence , 2003, gr-qc/0306084.

[32]  David Edward Bruschi,et al.  Phonon creation by gravitational waves , 2014, 1402.7009.

[33]  I. Fuentes,et al.  Using Berry's phase to detect the Unruh effect at lower accelerations. , 2010, Physical review letters.

[34]  C. Sabín,et al.  Extracting past-future vacuum correlations using circuit QED. , 2012, Physical review letters.

[35]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[36]  Achim Kempf,et al.  Processing quantum information with relativistic motion of atoms. , 2012, Physical review letters.

[37]  Yong Zhao,et al.  Experimental unconditionally secure bit commitment. , 2013, Physical review letters.

[38]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[39]  R. Mann,et al.  Alice falls into a black hole: entanglement in noninertial frames. , 2004, Physical review letters.

[40]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[41]  E Solano,et al.  Relativistic quantum teleportation with superconducting circuits. , 2012, Physical review letters.

[42]  R. Mann,et al.  Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector , 2013, 1307.4360.

[43]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[44]  Shih-Yuin Lin Notes on nonlocal projective measurements in relativistic systems , 2013, 1310.2504.

[45]  W. Unruh Notes on black-hole evaporation , 1976 .

[46]  D. Faccio,et al.  Gravitational parameter estimation in a waveguide , 2014, 1403.4855.

[47]  G. R. Jin,et al.  Quantum Fisher information of entangled coherent states in the presence of photon loss , 2013, 1307.7353.

[48]  A. G. S. Landulfo,et al.  Sudden death of entanglement and teleportation fidelity loss via the Unruh effect , 2009, 0907.0485.