A Parallel Augmented Subspace Method for Eigenvalue Problems
暂无分享,去创建一个
Hehu Xie | Ning Zhang | Fei Xu | Fei Xu | Hehu Xie | Ning Zhang
[1] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[2] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[3] Randolph E. Bank,et al. An optimal order process for solving finite element equations , 1981 .
[4] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[5] J. Pasciak,et al. New convergence estimates for multigrid algorithms , 1987 .
[6] Hamilton-Jacobi Equations,et al. Multigrid Methods for , 2011 .
[7] Hehu Xie,et al. A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..
[8] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2016, J. Comput. Phys..
[9] G. Burton. Sobolev Spaces , 2013 .
[10] Andrew Knyazev,et al. Preconditioned Eigensolvers - an Oxymoron? , 1998 .
[11] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[12] Andrew V. Knyazev,et al. A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..
[13] A. Knyazev,et al. Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .
[14] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[15] F. Chatelin. Spectral approximation of linear operators , 2011 .
[16] Hehu Xie,et al. A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..
[17] Vicente Hernández,et al. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.
[18] Hehu Xie,et al. Fast Eigenpairs Computation with Operator Adapted Wavelets and Hierarchical Subspace Correction , 2018, SIAM J. Numer. Anal..
[19] Herbert L. Strauss,et al. Quantum Mechanics, an Introduction , 1968 .
[20] James H. Bramble,et al. The analysis of multigrid methods , 2000 .
[21] Wolfgang Hackbusch,et al. On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method , 1979 .
[22] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[23] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[24] E. D'yakonov,et al. Minimization of the computational labor in determining the first eigenvalues of differential operators , 1980 .
[25] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[26] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[27] Merico E. Argentati,et al. Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc , 2007, SIAM J. Sci. Comput..
[28] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[29] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..
[30] D. Sorensen. IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .