Perspective on Porous Piezoelectric Ceramics to Control Internal Stress

Due to the unique electromechanical energy conversion capability of ferroelectric materials, they have been at the forefront of materials science for a variety of applications such as sensors, actuators and energy harvesting. Researchers have focused on exploring approaches to achieve improved ferroelectric performance, and to ensure that the available material systems are more environmentally friendly. This comprehensive review summarizes recent research progress on porous ceramics and highlights the variety of factors that are often ignored, namely the influence of porosity on the Curie temperature, and applications of porous ferroelectric materials with adjustable Curie temperature. Finally, the development trends and challenges of porous ferroelectric materials are discussed, aiming to provide new insights for the design and construction of ferroelectric materials.

[1]  J. Roscow,et al.  Residual Stress and Domain Switching in Freeze Cast Porous Barium Titanate , 2021, Journal of the European Ceramic Society.

[2]  K. Zhou,et al.  Evaluation of the pore morphologies for piezoelectric energy harvesting application , 2021, Ceramics International.

[3]  K. Zhou,et al.  Hierarchically structured lead-free barium strontium titanate for low-grade thermal energy harvesting , 2021, Ceramics International.

[4]  Bhupender Rawal,et al.  Freeze casting of lamellar-structured porous lead-free (Na0.52K0.48)(Nb0.95Sb0.05)O3 piezoceramic with remarkable enhancement in piezoelectric voltage constant and hydrostatic figure of merit , 2021, Journal of Materials Science: Materials in Electronics.

[5]  S. Han,et al.  Breaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO , 2020 .

[6]  G. Stoian,et al.  Effect of Porosity on Functional Properties of Lead-Free Piezoelectric BaZr0.15Ti0.85O3 Porous Ceramics , 2020, Materials.

[7]  Huajun Sun,et al.  Structural design of PZT porous ceramics obtained via free-casting by ice-templating and performance exploration , 2020 .

[8]  T. Fey,et al.  Temperature‐ and Stress‐Dependent Electromechanical Response of Porous Pb(Zr,Ti)O3 , 2020, Advanced Engineering Materials.

[9]  K. Zhou,et al.  Demonstration of Enhanced Piezo-Catalysis for Hydrogen Generation and Water Treatment at the Ferroelectric Curie Temperature , 2020, iScience.

[10]  Guorong Li,et al.  A novel piezoelectric ceramic with high Curie temperature and high piezoelectric coefficient , 2020 .

[11]  C. Bowen,et al.  Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials , 2020, Joule.

[12]  R. Vaish,et al.  Effect of Porosity on Energy Harvesting Performance of 0.5Ba(Ca 0.8 Zr 0.2 )O 3  − 0.5(Ba 0.7 Ca 0.3 )TiO 3 Ceramics: A Numerical Study , 2020, Energy Technology.

[13]  H. Naeem The influence of different pore forming agents on piezoelectric and dielectric properties of porous PZT-PCN ceramics , 2020 .

[14]  Zhong Lin Wang,et al.  Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self‐Powered Mechanosensational System , 2019, Advanced Functional Materials.

[15]  Christopher R. Bowen,et al.  Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems , 2019, The European Physical Journal Special Topics.

[16]  Jingkun Yu,et al.  Fibrous ZrO2-mullite porous ceramics fabricated by a hydratable alumina based aqueous gel-casting process , 2019, Ceramics International.

[17]  C. Bowen,et al.  Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca 0.3)TiO3 ceramics , 2019, Materials Research Bulletin.

[18]  J. Ferreira,et al.  Direct ink writing of macroporous lead‐free piezoelectric Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 , 2018, Journal of the American Ceramic Society.

[19]  C. Bowen,et al.  High piezoelectric sensitivity and hydrostatic figures of merit in unidirectional porous ferroelectric ceramics fabricated by freeze casting , 2018, Journal of the European Ceramic Society.

[20]  C. Bowen,et al.  Understanding the effect of porosity on the polarisation-field response of ferroelectric materials , 2018, Acta Materialia.

[21]  H. Du,et al.  Effect of the nanopore on ferroelectric domain structures and switching properties , 2018, Computational Materials Science.

[22]  R. Lewis,et al.  Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting , 2018, 1902.00314.

[23]  L. Cao,et al.  Enhanced piezoelectric properties of 3-1 type porous 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ferroelectric ceramics , 2017 .

[24]  L. Mitoseriu,et al.  Porosity-dependent properties of Nb-doped Pb(Zr,Ti)O3 ceramics , 2017 .

[25]  Sondipon Adhikari,et al.  Homogenization of porous piezoelectric materials , 2017 .

[26]  Sang‐Jae Kim,et al.  BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application , 2016 .

[27]  L. P. Eksperiandova,et al.  Recent trends of ceramic humidity sensors development: A review , 2016 .

[28]  Silvia Conforto,et al.  Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting , 2016, Sensors.

[29]  Zhenrong Li,et al.  Microstructures, dielectric and piezoelectric properties of unannealed and annealed porous 0.36BiScO3-0.64PbTiO3 ceramics , 2016, Journal of Materials Science.

[30]  Tingting Xu,et al.  Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process , 2016 .

[31]  C. Bowen,et al.  Porous ferroelectrics for energy harvesting applications , 2015, The European Physical Journal Special Topics.

[32]  C. Bowen,et al.  Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications , 2015 .

[33]  L. Mitoseriu,et al.  Study of the role of porosity on the functional properties of (Ba,Sr)TiO 3 ceramics , 2015 .

[34]  A. Nemati,et al.  Dielectric and piezoelectric properties of porous PZT–PCN ceramics sintered at different temperatures , 2015 .

[35]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[36]  Eric Breckenfeld,et al.  Enhancement of Ferroelectric Curie Temperature in BaTiO3 Films via Strain‐Induced Defect Dipole Alignment , 2014, Advanced materials.

[37]  Wei Liu,et al.  Effects of sintering behavior on piezoelectric properties of porous PZT ceramics , 2014 .

[38]  X. Xi,et al.  Processing and Properties of Porous PZT Ceramics from Particle‐Stabilized Foams via Gel Casting , 2013 .

[39]  E. Aulbach,et al.  Influence of uniaxial stress on the ferroelectric-to-paraelectric phase change in barium titanate , 2013 .

[40]  I. Kim,et al.  Processing of Porous Ceramics by Direct Foaming: A Review , 2013 .

[41]  T. A. Venkatesh,et al.  Effects of foam shape and porosity aspect ratio on the electromechanical properties of 3-3 piezoelectric foams , 2012 .

[42]  Rui Guo,et al.  Piezoelectric Properties of the 1–3 Type Porous Lead Zirconate Titanate Ceramics , 2011 .

[43]  Yong Huang,et al.  Effects of porosity on dielectric and piezoelectric properties of porous lead zirconate titanate ceramics , 2011 .

[44]  Rui Guo,et al.  Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics , 2011 .

[45]  Rui Guo,et al.  Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure , 2010 .

[46]  C. Nan,et al.  Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA‐Based Gel‐Casting Process , 2010 .

[47]  Lina Wu,et al.  Controlled fabrication of porous Al2O3 ceramic by N,N′-dimethylformamide-based gel-casting , 2010 .

[48]  Giacomo Cao,et al.  Influence of processing parameters on the electrical response of screen printed SrFe0.6Ti0.4O3−δ thick films , 2010 .

[49]  C. Nan,et al.  Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics , 2010 .

[50]  Genshui Wang,et al.  Enhanced Ferroelectric Properties of Intragranular‐Porous Pb(Zr0.95Ti0.05)O3 Ceramic Fabricated with Carbon Nanotubes , 2010 .

[51]  Jian Zhang,et al.  Neural network modeling and analysis of gel casting preparation of porous Si3N4 ceramics , 2009 .

[52]  Jianguo Zhu,et al.  Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute , 2008 .

[53]  Hyoun‐Ee Kim,et al.  Piezoelectric Properties of PZT‐Based Ceramic with Highly Aligned Pores , 2008 .

[54]  S. Deville Freeze‐Casting of Porous Ceramics: A Review of Current Achievements and Issues , 2008, 1710.04201.

[55]  E. Roncari,et al.  Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs , 2008 .

[56]  T. Kamel,et al.  Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics , 2008 .

[57]  J L Zhu,et al.  The effects of high pressure on the ferroelectric properties of nano-BaTiO3 ceramics , 2008 .

[58]  Yong Huang,et al.  Ceramics with Special Porous Structures Fabricated by Freeze‐Gelcasting: Using tert‐Butyl Alcohol as a Template , 2007 .

[59]  Hyoun‐Ee Kim,et al.  Fabrication of Porous PZT–PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene‐Based Freeze Casting , 2007 .

[60]  Hyoun‐Ee Kim,et al.  Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based Freeze Casting , 2007 .

[61]  X. Dong,et al.  Processing and piezoelectric properties of porous PZT ceramics , 2007 .

[62]  Jingfeng Li,et al.  Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents , 2007 .

[63]  X. Dong,et al.  Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics , 2007 .

[64]  Eduardo Saiz,et al.  Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[65]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[66]  R. Kar-Gupta,et al.  Electromechanical response of porous piezoelectric materials , 2006 .

[67]  X. Dong,et al.  The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application , 2006 .

[68]  D. K. Kharat,et al.  Study on microstructure, piezoelectric and dielectric properties of 3-3 porous PZT composites , 2006 .

[69]  André R. Studart,et al.  Processing Routes to Macroporous Ceramics: A Review , 2006 .

[70]  Paolo Colombo,et al.  Conventional and novel processing methods for cellular ceramics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  G. Weng,et al.  The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals , 2005 .

[72]  K. Niihara,et al.  Curie Temperature Anomaly in Lead Zirconate Titanate/Silver Composites , 2005 .

[73]  J. Halloran,et al.  Room-Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene–Camphor Eutectic System , 2005 .

[74]  N. Alford,et al.  Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina , 2005 .

[75]  K. Warrier,et al.  Gel casting process for Al2O3–SiC nanocomposites and its creep characteristics , 2004 .

[76]  Wei Pan,et al.  Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity-Graded Piezoelectric Actuators , 2003 .

[77]  T. Shou Synthesis of Porous Silicon Carbide and Its Catalysis , 2003 .

[78]  Paul G. Clem,et al.  Direct‐Write Fabrication of Pb(Nb,Zr,Ti)O3 Devices: Influence of Paste Rheology on Print Morphology and Component Properties , 2001 .

[79]  S. Kanzaki,et al.  Synthesis of Porous Ceramics with Complex Pore Structure by Freeze‐Dry Processing , 2001 .

[80]  C. Galassi,et al.  Porous piezoelectric ceramic hydrophone , 1999 .

[81]  Toshio Kimura,et al.  Effects of Microstructure and Composition on the Curie Temperature of Lead Barium Niobate Solid Solutions , 1996 .

[82]  Y. Yamashita,et al.  Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)O3–0.1 PbTiO3 Ceramic , 1996 .

[83]  I Novak Molecular isomorphism , 1995 .

[84]  C. Scott,et al.  Processing of porous ceramics , 1992 .

[85]  M. Janney,et al.  Gelcasting of Alumina , 1991 .

[86]  Kenji Uchino,et al.  Dependence of the Crystal Structure on Particle Size in Barium Titanate , 1989 .

[87]  G. Maher Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramics , 1983 .

[88]  Leslie E. Cross,et al.  Flexible composite transducers , 1978 .

[89]  H. Ihrig CORRIGENDUM: The phase stability of BaTiO3 as a function of doped 3d elements: an experimental study , 1978 .

[90]  I. J. Fritz Ultrasonic, dilatometric, and dielectric study of uniaxial‐stress effects in a barium‐calcium titanate ceramic , 1978 .

[91]  A. J. Burggraaf,et al.  Grain size effects on the ferroelectric-paraelectric transition, the dielectric constant, and the lattice parameters in lanthana-substituted lead titanate , 1974 .

[92]  Kunihiro Nagata,et al.  Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics , 1973 .

[93]  O. Saburi Semiconducting Bodies in the Family of Barium Titanates , 1961 .

[94]  N. J. Hellicar,et al.  Effect of Additives of Limited Solid Solubility on Ferroelectric Properties of Barium Titanate Ceramics , 1959 .

[95]  W. Voigt Beiträge zur molecularen Theorie der Piëzoelectricität , 1894 .

[96]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .