An implicit MLS meshless method for 2-D time dependent fractional diffusion–wave equation

[1]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[2]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[3]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[4]  W. Wyss The fractional diffusion equation , 1986 .

[5]  C. Lubich Discretized fractional calculus , 1986 .

[6]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[7]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[8]  J. C. López-Marcos A difference scheme for a nonlinear partial integrodifferential equation , 1990 .

[9]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[10]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[11]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[12]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[13]  I. Podlubny Fractional differential equations , 1998 .

[14]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[15]  Om P. Agrawal,et al.  A general solution for a fourth-order fractional diffusion–wave equation defined in a bounded domain , 2001 .

[16]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[17]  Om P. Agrawal,et al.  Response of a diffusion‐wave system subjected to deterministic and stochastic fields , 2003 .

[18]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[19]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[20]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[21]  YuanTong Gu,et al.  MESHFREE METHODS AND THEIR COMPARISONS , 2005 .

[22]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[23]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[24]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[25]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[26]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[27]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[28]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[29]  Ningming Nie,et al.  Features of seepage of a liquid to a Chink in the cracked Deformable Layer , 2010, Int. J. Model. Simul. Sci. Comput..

[30]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[31]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[32]  Prasad K. Yarlagadda,et al.  Time‐dependent fractional advection–diffusion equations by an implicit MLS meshless method , 2011 .

[33]  Jianfei Huang,et al.  Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.

[34]  Fawang Liu,et al.  A RBF meshless approach for modeling a fractal mobile/immobile transport model , 2014, Appl. Math. Comput..