The Crystal Structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 Macro Domains Define a Conserved Adenosine Binding Pocket

ABSTRACT Macro domains (also called “X domains”) constitute a protein module family present in all kingdoms of life, including viruses of the Coronaviridae and Togaviridae families. Crystal structures of the macro domain from the Chikungunya virus (an “Old World” alphavirus) and the Venezuelan equine encephalitis virus (a “New World” alphavirus) were determined at resolutions of 1.65 and 2.30 Å, respectively. These domains are active as adenosine di-phosphoribose 1″-phosphate phosphatases. Both the Chikungunya and the Venezuelan equine encephalitis virus macro domains are ADP-ribose binding modules, as revealed by structural and functional analysis. A single aspartic acid conserved through all macro domains is responsible for the specific binding of the adenine base. Sequence-unspecific binding to long, negatively charged polymers such as poly(ADP-ribose), DNA, and RNA is observed and attributed to positively charged patches outside of the active site pocket, as judged by mutagenesis and binding studies. The crystal structure of the Chikungunya virus macro domain with an RNA trimer shows a binding mode utilizing the same adenine-binding pocket as ADP-ribose, but avoiding the ADP-ribose 1″-phosphate phosphatase active site. This leaves the AMP binding site as the sole common feature in all macro domains.

[1]  F. Studier,et al.  Structure and mechanism of ADP‐ribose‐1″‐monophosphatase (Appr‐1″‐pase), a ubiquitous cellular processing enzyme , 2005, Protein science : a publication of the Protein Society.

[2]  L. Kääriäinen,et al.  ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2 , 1994, Journal of virology.

[3]  D I Svergun,et al.  The impact of protein characterization in structural proteomics , 2006, Acta crystallographica. Section D, Biological crystallography.

[4]  C. Rice,et al.  Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. , 1994, Virology.

[5]  J. Peränen,et al.  Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2 , 1990, Journal of virology.

[6]  B. Coutard,et al.  Expression, purification and crystallization of the SARS-CoV macro domain , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[7]  S. Doublié Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[8]  A. Ladurner Inactivating chromosomes: a macro domain that minimizes transcription. , 2003, Molecular cell.

[9]  T. Ahola,et al.  Structural and Functional Basis for ADP-Ribose and Poly(ADP-Ribose) Binding by Viral Macro Domains , 2006, Journal of Virology.

[10]  T. Ahola,et al.  Elimination of Phosphorylation Sites of Semliki Forest Virus Replicase Protein nsP3* , 2001, The Journal of Biological Chemistry.

[11]  A. Ruiz [Epidemic of Venezuelan equine encephalitis]. , 1997, Revista panamericana de salud publica = Pan American journal of public health.

[12]  J. Määttä,et al.  Replicase Complex Genes of Semliki Forest Virus Confer Lethal Neurovirulence , 2000, Journal of Virology.

[13]  R. Kuhn,et al.  Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro. , 2009, Virology.

[14]  R. Owens,et al.  Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. , 2006, Acta crystallographica. Section D, Biological crystallography.

[15]  W. Filipowicz,et al.  ADP-Ribose-1"-Monophosphatase: a Conserved Coronavirus Enzyme That Is Dispensable for Viral Replication in Tissue Culture , 2005, Journal of Virology.

[16]  T. Ahola,et al.  Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Moskowitz,et al.  Cell biology. PARP-1--a perpetrator of apoptotic cell death? , 2002, Science.

[18]  George T Detitta,et al.  Thermofluor-based high-throughput stability optimization of proteins for structural studies. , 2006, Analytical biochemistry.

[19]  B. Ludewig,et al.  Mouse Hepatitis Virus Liver Pathology Is Dependent on ADP-Ribose-1″-Phosphatase, a Viral Function Conserved in the Alpha-Like Supergroup , 2008, Journal of Virology.

[20]  Joseph D. Kwasnoski,et al.  High-density miniaturized thermal shift assays as a general strategy for drug discovery. , 2001, Journal of biomolecular screening.

[21]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[22]  K. Scheffzek,et al.  Splicing regulates NAD metabolite binding to histone macroH2A , 2005, Nature Structural &Molecular Biology.

[23]  Peer Bork,et al.  SMART 5: domains in the context of genomes and networks , 2005, Nucleic Acids Res..

[24]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[25]  M. Bycroft,et al.  The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. , 2003, Journal of molecular biology.

[26]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[27]  F. Hoz,et al.  Epidemic Venezuelan equine encephalitis in La Guajira, Colombia, 1995. , 1997, The Journal of infectious diseases.

[28]  M. Bycroft,et al.  The macro domain is an ADP‐ribose binding module , 2004, The EMBO journal.

[29]  J. H. Strauss,et al.  Evolutionary Relationships and Systematics of the Alphaviruses , 2001, Journal of Virology.

[30]  E Blanc,et al.  Electronic Reprint Biological Crystallography Modelling Prior Distributions of Atoms for Macromolecular Refinement and Completion Roversi Et Al. ¯ Prior Distributions for Macromolecular Refinement and Completion , 2022 .

[31]  G. Wengler,et al.  The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. , 1993, Virology.

[32]  S. Sawicki,et al.  Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA , 1994, Journal of virology.

[33]  Airlie J. McCoy,et al.  Solving structures of protein complexes by molecular replacement with Phaser , 2006, Acta crystallographica. Section D, Biological crystallography.

[34]  Eugene V. Koonin,et al.  Putative papain‐related thiol proteases of positive‐strand RNA viruses Identification of rubi‐ and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi‐, α‐ and coronaviruses , 1991, FEBS Letters.

[35]  S. Fields,et al.  A biochemical genomics approach for identifying genes by the activity of their products. , 1999, Science.

[36]  H. Vihinen,et al.  Phosphorylation site analysis of Semliki forest virus nonstructural protein 3. , 2000, The Journal of biological chemistry.

[37]  D. Griffin,et al.  Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death. , 2002, Virology.

[38]  J. H. Strauss,et al.  Identification of the active site residues in the nsP2 proteinase of sindbis virus , 1992, Virology.

[39]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[40]  K. Luger,et al.  Structural Characterization of the Histone Variant macroH2A , 2005, Molecular and Cellular Biology.

[41]  R. Hilgenfeld,et al.  Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property , 2008, Protein science : a publication of the Protein Society.

[42]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[43]  R. Ménard,et al.  The Papain-Like Protease from the Severe Acute Respiratory Syndrome Coronavirus Is a Deubiquitinating Enzyme , 2005, Journal of Virology.

[44]  T. Ahola,et al.  Differential Activities of Cellular and Viral Macro Domain Proteins in Binding of ADP-Ribose Metabolites , 2008, Journal of Molecular Biology.

[45]  George M. Sheldrick,et al.  Macromolecular phasing with SHELXE , 2002 .

[46]  E. Gould,et al.  Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? , 2008, Virology Journal.

[47]  J. Pehrson,et al.  Evolutionary conservation of histone macroH2A subtypes and domains. , 1998, Nucleic acids research.

[48]  Y. Guan,et al.  Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage , 2003, Journal of Molecular Biology.

[49]  J. H. Strauss,et al.  Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. , 1990, Virology.

[50]  Kin Moy,et al.  Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-Ribose-1″-Phosphate Dephosphorylation by a Conserved Domain of nsP3 , 2005, Structure.

[51]  L. Solomon,et al.  Chikungunya viral arthropathy: a clinical description. , 1980, The Journal of rheumatology.

[52]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[53]  M. Moskowitz,et al.  PARP-1--a Perpetrator of Apoptotic Cell Death? , 2002, Science.