Chapter II - First-Order Proof Theory of Arithmetic

[1]  Richard J. Lipton,et al.  Model theoretic aspects of computational complexity , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[2]  Domenico Zambella Notes on Polynomially Bounded Arithmetic , 1996, J. Symb. Log..

[3]  Jussi KETONENt,et al.  Rapidly growing Ramsey functions , 1981 .

[4]  A. Razborov Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic , 1995 .

[5]  S. Buss,et al.  An Application of Boolean Complexity to Separation Problems in Bounded Arithmetic , 1994 .

[6]  Stephen A. Cook,et al.  Functional interpretations of feasibly constructive arithmetic , 1989, STOC '89.

[7]  Jan Krajícek,et al.  Bounded Arithmetic and the Polynomial Hierarchy , 1991, Ann. Pure Appl. Log..

[8]  G. E. Mints Quantifier-free and one-quantifier systems , 1972 .

[9]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[10]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[11]  W. A. Howard Assignment of Ordinals to Terms for Primitive Recursive Functionals of Finite Type , 1970 .

[12]  Samuel R. Buss,et al.  Unprovability of Consistency Statements in Fragments of Bounded Arithmetic , 1995, Ann. Pure Appl. Log..

[13]  S. Feferman Arithmetization of metamathematics in a general setting , 1959 .

[14]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..

[15]  C. Smorynski The Incompleteness Theorems , 1977 .

[16]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[17]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.

[18]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[19]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[20]  J. Barkley Rosser,et al.  Extensions of some theorems of Gödel and Church , 1936, Journal of Symbolic Logic.

[21]  Jeremy Avigad,et al.  A Model-Theoretic Approach to Ordinal Analysis , 1997, Bulletin of Symbolic Logic.

[22]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[23]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[24]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[25]  Bernard R. Hodgson,et al.  An Arithmetical Characterization of NP , 1982, Theor. Comput. Sci..

[26]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[27]  Samuel R. Buss Relating the Bounded Arithmetic and Polynomial Time Hierarchies , 1995, Ann. Pure Appl. Log..

[28]  George Wilmers,et al.  Models OF Peano Arithmetic (Oxford Logic Guides 15) , 1993 .

[29]  C. Parsons On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .

[30]  Samuel R. Buss A note on bootstrapping intuitionistic bounded arithmetic , 1993 .

[31]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[32]  S. Buss Axiomatizations and Conservation Results for Fragments of Bounded Arithmetic ∗ , 1990 .

[33]  Jeff B. Paris,et al.  On the scheme of induction for bounded arithmetic formulas , 1987, Ann. Pure Appl. Log..

[34]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[35]  G. Takeuti Some Relations among Systems for Bounded Arithmetic , 1990 .

[36]  Peter Aczel etc HANDBOOK OF MATHEMATICAL LOGIC , 1999 .

[37]  Pavel Pudlák Some prime elements in the lattice of interpretability types , 1983 .

[38]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[39]  Wilfried Sieg,et al.  Fragments of arithmetic , 1985, Ann. Pure Appl. Log..

[40]  Samuel R. Buss,et al.  Bounded Arithmetic and Propositional Proof Complexity , 1997 .

[41]  Gregory J. Chaitin,et al.  Information-Theoretic Limitations of Formal Systems , 1974, JACM.

[42]  Alexander A. Razborov,et al.  On provably disjoint NP-pairs , 1994, Electron. Colloquium Comput. Complex..

[43]  J. Paris,et al.  ∑n-Collection Schemas in Arithmetic , 1978 .

[44]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[45]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.

[46]  Wolfram Pohlers Proof Theory: An Introduction , 1990 .

[47]  Pavel Pudlák,et al.  A note on bounded arithmetic , 1990 .

[48]  Peter Clote,et al.  Partition relations in arithmetic , 1985 .

[49]  Stephen A. Cook,et al.  Feasibly constructive proofs and the propositional calculus (Preliminary Version) , 1975, STOC.

[50]  M. H. Lob,et al.  Solution of a Problem of Leon Henkin , 1955, J. Symb. Log..

[51]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[52]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[53]  Raymond M. Smullyan,et al.  Godel's Incompleteness Theorems , 1992 .

[54]  Jeff B. Paris On models of arithmetic , 1972 .