Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion

The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments also are required for efficient fusion and provide insight into their mechanistic roles. The essential feature of the CT is a conserved amphipathic helix. A synthetic peptide corresponding to the helix, but not to unrelated amphipathic helices, can act in trans to restore the fusion activity of tailless ATL. The CT promotes vesicle fusion by interacting directly with and perturbing the lipid bilayer without causing significant lysis. The TM segments do not serve as mere membrane anchors for the cytosolic domain but rather mediate the formation of ATL oligomers. Point mutations in either the C-terminal helix or the TMs impair ATL’s ability to generate and maintain ER morphology in vivo. Our results suggest that protein–lipid and protein–protein interactions within the membrane cooperate with the conformational change of the cytosolic domain to achieve homotypic ER membrane fusion.

[1]  T. Rapoport,et al.  The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae , 2012, The Journal of cell biology.

[2]  P. Zucchi,et al.  Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis , 2011, Molecular biology of the cell.

[3]  S. Moro,et al.  GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion , 2011, Proceedings of the National Academy of Sciences.

[4]  J. McNew,et al.  Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain , 2011, Proceedings of the National Academy of Sciences.

[5]  T. Rapoport,et al.  Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes , 2011, Proceedings of the National Academy of Sciences.

[6]  H. Sondermann,et al.  Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A , 2011, Proceedings of the National Academy of Sciences.

[7]  G. Drin,et al.  Amphipathic helices and membrane curvature , 2010, FEBS letters.

[8]  Yoko Shibata,et al.  A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network , 2009, Cell.

[9]  A. Martinuzzi,et al.  Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin , 2009, Nature.

[10]  Dirk Fasshauer,et al.  Is Assembly of the SNARE Complex Enough to Fuel Membrane Fusion? , 2009, Journal of Biological Chemistry.

[11]  P. Coutinho,et al.  Novel SPG3A and SPG4 mutations in dominant spastic paraplegia families , 2009, Acta neurologica Scandinavica.

[12]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[13]  Christos Proukakis,et al.  Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms , 2008, The Lancet Neurology.

[14]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[15]  H. McMahon,et al.  Mechanisms of membrane fusion: disparate players and common principles , 2008, Nature Reviews Molecular Cell Biology.

[16]  C. Blackstone,et al.  Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. , 2008, Human molecular genetics.

[17]  L. Chernomordik,et al.  Viral and Developmental Cell Fusion Mechanisms: Conservation and Divergence , 2008, Developmental Cell.

[18]  A. Chattopadhyay,et al.  Melittin: a Membrane-active Peptide with Diverse Functions , 2007, Bioscience reports.

[19]  K. Claeys,et al.  Hereditary spastic paraplegia 3A associated with axonal neuropathy. , 2007, Archives of neurology.

[20]  J. Nunnari The machines that divide and fuse mitochondria , 2007, Annual review of biochemistry.

[21]  Mathias W. Hofmann,et al.  The role of transmembrane domains in membrane fusion , 2007, Cellular and Molecular Life Sciences.

[22]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[23]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[24]  A. Brunger,et al.  Conformation of the synaptobrevin transmembrane domain. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Randy Schekman,et al.  Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle , 2005, Cell.

[26]  W. Sugiura,et al.  Role of the Specific Amino Acid Sequence of the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 in Membrane Fusion , 2005, Journal of Virology.

[27]  Fan Zhang,et al.  Hemifusion in SNARE-mediated membrane fusion , 2005, Nature Structural &Molecular Biology.

[28]  J. McCaffery,et al.  Structural Basis of Mitochondrial Tethering by Mitofusin Complexes , 2004, Science.

[29]  M. Jackson,et al.  Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis , 2004, Science.

[30]  C. Hawes,et al.  A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. , 2004, The Plant journal : for cell and molecular biology.

[31]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[32]  C. Blackstone,et al.  Cellular Localization, Oligomerization, and Membrane Association of the Hereditary Spastic Paraplegia 3A (SPG3A) Protein Atlastin* , 2003, Journal of Biological Chemistry.

[33]  Ying Zhang,et al.  Visualization of membrane protein domains by cryo-electron microscopy of dengue virus , 2003, Nature Structural Biology.

[34]  Dae-Hyuk Kweon,et al.  Regulation of neuronal SNARE assembly by the membrane , 2003, Nature Structural Biology.

[35]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[36]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[37]  A. Tessa,et al.  SPG3A: An additional family carrying a new atlastin mutation , 2002, Neurology.

[38]  P. Hedera,et al.  Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia , 2001, Nature Genetics.

[39]  J. Reed,et al.  Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. , 2001, Journal of molecular biology.

[40]  B. Walz,et al.  Endoplasmic reticulum of animal cells and its organization into structural and functional domains. , 2001, International review of cytology.

[41]  A. Herrmann,et al.  Modification of the Cytoplasmic Domain of Influenza Virus Hemagglutinin Affects Enlargement of the Fusion Pore , 2000, Journal of Virology.

[42]  C. Mandl,et al.  Mapping of Functional Elements in the Stem-Anchor Region of Tick-Borne Encephalitis Virus Envelope Protein E , 1999, Journal of Virology.

[43]  M. Roth,et al.  Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. , 1999, Molecular biology of the cell.

[44]  J. Thatcher,et al.  Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p , 1998, The Journal of cell biology.

[45]  D. Z. Cleverley,et al.  The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  H. Ghosh,et al.  Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G , 1997, Journal of virology.

[47]  T. Wilk,et al.  Glycoprotein incorporation and HIV-1 infectivity despite exchange of the gp160 membrane-spanning domain. , 1996, Virology.