Amplification of spontaneous emission in erbium-doped single-mode fibers

Amplification of spontaneous emission (ASE) in erbium-doped single-mode fiber amplifiers operating at lambda =1.53 mu m is studied theoretically and experimentally. The ASE noise spectra obtained from the theory are found to be in excellent quantitative agreement with the experimental data. The observed changes in ASE spectral shapes under different population inversion conditions are also explained. The model may be used to evaluate the performance of erbium-doped fiber lasers as well as to assess the noise characteristics of erbium-doped fiber amplifiers as applied to wavelength-division multiplexing optical communications. >

[1]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[2]  Elias Snitzer,et al.  Amplification in a Fiber Laser , 1964 .

[3]  E. Snitzer,et al.  Yb3+–Er3+ GLASS LASER , 1965 .

[4]  G. McAllister,et al.  Gain Saturation in Neodymium: Glass Laser Amplifiers , 1967 .

[5]  E. Snitzer,et al.  Detection with a fiber laser preamplifier at 1.06 µ , 1969 .

[6]  J. N. Sandoe,et al.  Variation of Nd3+ cross section for stimulated emission with glass composition , 1971 .

[7]  A. Yariv,et al.  Spectral narrowing in high-gain lasers , 1972 .

[8]  C. Burrus,et al.  Neodymium‐doped silica lasers in end‐pumped fiber geometry , 1973 .

[9]  C. Burrus,et al.  Neodymium-Doped Fiber Lasers: Room Temperature cw Operation with an Injection Laser Pump. , 1974, Applied optics.

[10]  Renata Reisfeld,et al.  Lasers and Excited States of Rare Earths , 1977 .

[11]  J. Heber,et al.  Renata Reisfeld und Christian H. Jørgensen: Lasers and Excited States of Rare Earths, Bd. 1 der Reihe: “Inorganic Chemistry Concepts”. Springer‐Verlag, Berlin, Heidelberg, New York 1977. 226 Seiten, Preis: DM 64,–, $ 29,50. , 1978 .

[12]  M. Weber Fluorescence and glass lasers , 1982 .

[13]  Michel J. F. Digonnet,et al.  Theory of superfluorescent fiber lasers , 1986 .

[14]  M. E. Fermann,et al.  Fabrication and characterization of low-loss optical fibers containing rare-earth ions , 1986 .

[15]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[16]  Roger M. Macfarlane,et al.  Homogeneous line broadening of optical transitions of ions and molecules in glasses , 1987 .

[17]  Shigeo Kawata,et al.  High-power operation of a transverse-mode stabilised AlGaInp visible light (λ L = 683 nm) semiconductor laser , 1987 .

[18]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[19]  C. G. Atkins,et al.  Spectroscopic studies of Er 3+ -doped single-mode silica fiber , 1987 .

[20]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[21]  R. J. Mears,et al.  High-gain rare-earth-doped fibre amplifier at 1.54µm , 1987 .

[22]  B. Ainslie,et al.  Low-threshold CW operation of an erbium-doped fibre laser pumped at 807 nm wavelength , 1987 .

[23]  David N. Payne,et al.  Diode-laser-pumped operation of an Er3+-doped single-mode fibre laser , 1987 .

[24]  Laurence Reekie,et al.  Extended wavelength operation of an Er3+-doped fiber laser pumped at 808 nm , 1988 .