Calcium-Dependent Isoforms of Protein Kinase C Mediate Posttetanic Potentiation at the Calyx of Held

[1]  T. Südhof,et al.  Doc2 Supports Spontaneous Synaptic Transmission by a Ca2+-Independent Mechanism , 2011, Neuron.

[2]  W. Ho,et al.  Post-tetanic increase in the fast-releasing synaptic vesicle pool at the expense of the slowly releasing pool , 2010, The Journal of general physiology.

[3]  L. Niels Cornelisse,et al.  Doc2b Is a High-affinity Ca 2+ Sensor for Spontaneous Neurotransmitter Release , 2022 .

[4]  T. Südhof,et al.  Munc13 C2B-Domain – an Activity-Dependent Ca2+-Regulator of Synaptic Exocytosis , 2010, Nature Structural &Molecular Biology.

[5]  Jianhua Xu,et al.  Compound vesicle fusion increases quantal size and potentiates synaptic transmission , 2009, Nature.

[6]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[7]  M. Spira,et al.  Activity-dependent calpain activation plays a critical role in synaptic facilitation and post-tetanic potentiation. , 2009, Learning & memory.

[8]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[9]  W. Catterall,et al.  Calcium Channel Regulation and Presynaptic Plasticity , 2008, Neuron.

[10]  Nils Brose,et al.  Phorbol Esters Modulate Spontaneous and Ca2+-Evoked Transmitter Release via Acting on Both Munc13 and Protein Kinase C , 2008, The Journal of Neuroscience.

[11]  W. Ho,et al.  Presynaptic Release Probability and Readily Releasable Pool Size Are Regulated by Two Independent Mechanisms during Posttetanic Potentiation at the Calyx of Held Synapse , 2008, The Journal of Neuroscience.

[12]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[13]  Doyun Lee,et al.  Target Cell-Specific Involvement of Presynaptic Mitochondria in Post-Tetanic Potentiation at Hippocampal Mossy Fiber Synapses , 2007, The Journal of Neuroscience.

[14]  R. Schneggenburger,et al.  Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC , 2007, Proceedings of the National Academy of Sciences.

[15]  M. Ghirardi,et al.  Phosphorylation of synapsin domain A is required for post-tetanic potentiation , 2007, Journal of Cell Science.

[16]  S. Corbalán-García,et al.  The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. , 2007, Journal of molecular biology.

[17]  W. Regehr,et al.  Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity , 2007, Neuron.

[18]  J. Borst,et al.  Dynamics of the readily releasable pool during post‐tetanic potentiation in the rat calyx of Held synapse , 2007, The Journal of physiology.

[19]  M. Verhage,et al.  Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity , 2007, Neuron.

[20]  J. Falke,et al.  Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. , 2007, Biochemistry.

[21]  J. Borst,et al.  An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. , 2006, Journal of neurophysiology.

[22]  W. Regehr,et al.  Sustained Elevation of Dendritic Calcium Evokes Widespread Endocannabinoid Release and Suppression of Synapses onto Cerebellar Purkinje Cells , 2006, The Journal of Neuroscience.

[23]  Takeshi Sakaba,et al.  Roles of the Fast-Releasing and the Slowly Releasing Vesicles in Synaptic Transmission at the Calyx of Held , 2006, The Journal of Neuroscience.

[24]  Y. Sara,et al.  Phorbol Esters Target the Activity-Dependent Recycling Pool and Spare Spontaneous Vesicle Recycling , 2005, The Journal of Neuroscience.

[25]  R. Schneggenburger,et al.  Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion , 2005, Nature.

[26]  R. Schneggenburger,et al.  Presynaptic Ca2+ Requirements and Developmental Regulation of Posttetanic Potentiation at the Calyx of Held , 2005, The Journal of Neuroscience.

[27]  J. Borst,et al.  Post‐tetanic potentiation in the rat calyx of Held synapse , 2005, The Journal of physiology.

[28]  D. Storm,et al.  The role of calmodulin as a signal integrator for synaptic plasticity , 2005, Nature Reviews Neuroscience.

[29]  Christian Rosenmund,et al.  Calmodulin and Munc13 Form a Ca2+ Sensor/Effector Complex that Controls Short-Term Synaptic Plasticity , 2004, Cell.

[30]  Wade G Regehr,et al.  Presynaptic calcium measurements at physiological temperatures using a new class of dextran-conjugated indicators. , 2004, Journal of neurophysiology.

[31]  Scott M Thompson,et al.  Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation , 2003, Nature Neuroscience.

[32]  Nils Brose,et al.  Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters , 2002, Journal of Cell Science.

[33]  Joseph J. Falke,et al.  C2 Domains of Protein Kinase C Isoforms α, β, and γ: Activation Parameters and Calcium Stoichiometries of the Membrane-Bound State , 2002 .

[34]  M. Sajan,et al.  Knockout of PKC Enhances Insulin Signaling Through PI3K , 2002 .

[35]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[36]  P. Jonas,et al.  PTP and LTP at a hippocampal mossy fiber-interneuron synapse , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Tomoyuki Takahashi,et al.  Activation of the epsilon isoform of protein kinase C in the mammalian nerve terminal , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Xin-sheng Wu,et al.  Protein Kinase C Increases the Apparent Affinity of the Release Machinery to Ca2+ by Enhancing the Release Machinery Downstream of the Ca2+ Sensor , 2001, The Journal of Neuroscience.

[39]  A. Newton,et al.  Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. , 2001, Chemical reviews.

[40]  Edwin J. Weeber,et al.  A Role for the β Isoform of Protein Kinase C in Fear Conditioning , 2000, The Journal of Neuroscience.

[41]  B. Walmsley,et al.  Phosphorylation regulates spontaneous and evoked transmitter release at a giant terminal in the rat auditory brainstem , 2000, The Journal of physiology.

[42]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[43]  Y. Takai,et al.  Presynaptic Mechanism for Phorbol Ester-Induced Synaptic Potentiation , 1999, The Journal of Neuroscience.

[44]  S. Corbalán-García,et al.  Determination of the calcium-binding sites of the C2 domain of protein kinase Calpha that are critical for its translocation to the plasma membrane. , 1999, The Biochemical journal.

[45]  L. Maler,et al.  Differential roles of Ca2+/calmodulin-dependent kinases in posttetanic potentiation at input selective glutamatergic pathways. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E R Kandel,et al.  Involvement of Pre- and Postsynaptic Mechanisms in Posttetanic Potentiation at Aplysia Synapses , 1997, Science.

[47]  Paul W. Frankland,et al.  Impaired learning in mice with abnormal short-lived plasticity , 1996, Current Biology.

[48]  A. Tarakhovsky,et al.  Immunodeficiency in Protein Kinase Cβ-Deficient Mice , 1996, Science.

[49]  Alcino J. Silva,et al.  The α-Ca2+/calmodulin kinase II: A bidirectional modulator of presynaptic plasticity , 1995, Neuron.

[50]  D W Tank,et al.  A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  L. Eliot,et al.  Modulation of spontaneous transmitter release during depression and posttetanic potentiation of Aplysia sensory-motor neuron synapses isolated in culture , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  D W Tank,et al.  The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  D. Madison,et al.  Phorbol esters enhance synaptic transmission by a presynaptic, calcium‐dependent mechanism in rat hippocampus. , 1993, The Journal of physiology.

[54]  W. Griffith,et al.  Voltage-clamp analysis of posttetanic potentiation of the mossy fiber to CA3 synapse in hippocampus. , 1990, Journal of neurophysiology.

[55]  R S Zucker,et al.  Calcium in motor nerve terminals associated with posttetanic potentiation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Hiroshi Kase,et al.  Inhibitors of calmodulin and protein kinase C block different phases of hippocampal long-term potentiation , 1988, Brain Research.

[57]  Klaus G. Reymann,et al.  Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons , 1988, Brain Research.

[58]  R. Rahamimoff,,et al.  Ionic basis of tetanic and post‐tetanic potentiation at a mammalian neuromuscular junction. , 1988, The Journal of physiology.

[59]  Robert C. Malenka,et al.  Potentiation of synaptic transmission in the hippocampus by phorbol esters , 1986, Nature.

[60]  R. Zucker,et al.  Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions , 1983, The Journal of general physiology.

[61]  A. Lev-Tov,et al.  A study of tetanic and post‐tetanic potentiation of miniature end‐plate potentials at the frog neuromuscular junction. , 1980, The Journal of physiology.

[62]  K L Magleby,et al.  A quantitative description of tetanic and post‐tetanic potentiation of transmitter release at the frog neuromuscular junction. , 1975, The Journal of physiology.

[63]  J. Eccles,et al.  Presynaptic changes associated with post‐tetanic potentiation in the spinal cord , 1959, The Journal of physiology.

[64]  B. Katz,et al.  Statistical factors involved in neuromuscular facilitation and depression , 1954, The Journal of physiology.

[65]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[66]  J. Falke,et al.  C2 domains of protein kinase C isoforms alpha, beta, and gamma: activation parameters and calcium stoichiometries of the membrane-bound state. , 2002, Biochemistry.

[67]  M. Sajan,et al.  Knockout of PKC alpha enhances insulin signaling through PI3K. , 2002, Molecular endocrinology.

[68]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[69]  J. Sweatt,et al.  A role for the beta isoform of protein kinase C in fear conditioning. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  A. Tarakhovsky,et al.  Immunodeficiency in protein kinase cbeta-deficient mice. , 1996, Science.

[71]  P. Chapman,et al.  The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. , 1995, Neuron.

[72]  S. Silberberg,et al.  Activation of protein kinase C augments evoked transmitter release , 1987, Nature.

[73]  K L Magleby,et al.  Facilitation, augmentation, and potentiation of transmitter release. , 1979, Progress in brain research.