Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage

Summary We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage.

[1]  Christopher M Hickey,et al.  Function and regulation of SUMO proteases , 2012, Nature Reviews Molecular Cell Biology.

[2]  Weidong Wang,et al.  FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. , 2008, Human molecular genetics.

[3]  Jiri Bartek,et al.  TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes , 2014, Cell.

[4]  P. Knipscheer,et al.  XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. , 2014, Molecular cell.

[5]  L. Jensen,et al.  Mass Spectrometric Analysis of Lysine Ubiquitylation Reveals Promiscuity at Site Level* , 2010, Molecular & Cellular Proteomics.

[6]  M. Mann,et al.  Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control , 2011, Science Signaling.

[7]  A. Sharrocks,et al.  An extended consensus motif enhances the specificity of substrate modification by SUMO , 2006, The EMBO journal.

[8]  J. Olsen,et al.  GeLCMS for in-depth protein characterization and advanced analysis of proteomes. , 2011, Methods in molecular biology.

[9]  G. Barton,et al.  System-Wide Changes to SUMO Modifications in Response to Heat Shock , 2009, Science Signaling.

[10]  N. Mailand,et al.  Regulation of PCNA–protein interactions for genome stability , 2013, Nature Reviews Molecular Cell Biology.

[11]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[12]  J. Sale,et al.  Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair , 2007, Molecular cell.

[13]  T. Yao,et al.  Ubiquitin signals proteolysis-independent stripping of transcription factors. , 2014, Molecular cell.

[14]  M. Dasso,et al.  The RanGAP1-RanBP2 Complex Is Essential for Microtubule-Kinetochore Interactions In Vivo , 2004, Current Biology.

[15]  J. Walter,et al.  Mechanism and regulation of incisions during DNA interstrand cross-link repair. , 2014, DNA repair.

[16]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[17]  J. Olsen,et al.  RNF4 is required for DNA double-strand break repair in vivo , 2012, Cell Death and Differentiation.

[18]  S. Elledge,et al.  The DNA damage response: making it safe to play with knives. , 2010, Molecular cell.

[19]  Min Huang,et al.  Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. , 2009, Developmental cell.

[20]  J. Rouse,et al.  DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage , 2012, Nature Structural &Molecular Biology.

[21]  S. Elledge,et al.  FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway , 2008, Nature Structural &Molecular Biology.

[22]  A. Strasser,et al.  The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. , 2012, Molecular cell.

[23]  S. Elledge,et al.  Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair , 2007, Cell.

[24]  Steven P Gygi,et al.  A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. , 2007, Molecular cell.

[25]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[26]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[27]  S. Jackson,et al.  Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks , 2009, Nature.

[28]  N. Mailand,et al.  DNA damage–inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger , 2012, The Journal of cell biology.

[29]  J. Walter,et al.  Mechanism of RAD51-Dependent DNA Interstrand Cross-Link Repair , 2011, Science.

[30]  J. Yates,et al.  Dual Recruitment of Cdc48 (p97)-Ufd1-Npl4 Ubiquitin-selective Segregase by Small Ubiquitin-like Modifier Protein (SUMO) and Ubiquitin in SUMO-targeted Ubiquitin Ligase-mediated Genome Stability Functions* , 2012, The Journal of Biological Chemistry.

[31]  Junya Chen,et al.  FAN1 Acts with FANCI-FANCD2 to Promote DNA Interstrand Cross-Link Repair , 2010, Science.

[32]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[33]  P. Andreassen,et al.  A role for monoubiquitinated FANCD2 at telomeres in ALT cells , 2009, Nucleic acids research.

[34]  F. Melchior,et al.  Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies , 2014, Nature Protocols.

[35]  T. Glover,et al.  Chromosomal instability at common fragile sites in Seckel syndrome. , 2004, American journal of human genetics.

[36]  S. Jackson,et al.  RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. , 2012, Genes & development.

[37]  C. Lima,et al.  A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 Ubc9 , 2009, Nature Structural &Molecular Biology.

[38]  A. D’Andrea,et al.  Molecular pathogenesis and clinical management of Fanconi anemia. , 2012, The Journal of clinical investigation.

[39]  R. Hay,et al.  SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. , 2012, Genes & development.

[40]  L. Passmore,et al.  The Genetic and Biochemical Basis of FANCD2 Monoubiquitination , 2014, Molecular cell.

[41]  M. Sivasubramaniam,et al.  Ku70 Corrupts DNA Repair in the Absence of the Fanconi Anemia Pathway , 2010, Science.

[42]  S. V. Nielsen,et al.  DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks , 2012, Nature Structural &Molecular Biology.

[43]  M. Mann,et al.  Uncovering Global SUMOylation Signaling Networks in a Site-Specific Manner , 2014, Nature Structural &Molecular Biology.

[44]  Richard J. Lavallee,et al.  Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. , 2012, Journal of proteome research.

[45]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[46]  A. D’Andrea,et al.  The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. , 2001, Molecular genetics and metabolism.

[47]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[48]  M. Tatham,et al.  Detection of protein SUMOylation in vivo , 2009, Nature Protocols.

[49]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[50]  Z. Hořejší,et al.  Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. , 2010, Molecular cell.

[51]  S. Elledge,et al.  The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair , 2009, Science.

[52]  K. J. Patel,et al.  The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA , 2012, The Journal of pathology.

[53]  T. Glover,et al.  Functional Interaction between the Fanconi Anemia D2 Protein and Proliferating Cell Nuclear Antigen (PCNA) via a Conserved Putative PCNA Interaction Motif* , 2009, The Journal of Biological Chemistry.

[54]  S. Elledge,et al.  Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway , 2011, Science.

[55]  M. Tatham,et al.  SUMO Chain-Induced Dimerization Activates RNF4 , 2014, Molecular cell.

[56]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[57]  S. Jentsch,et al.  Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51–Rad52 interaction , 2013, Nature Cell Biology.

[58]  A. D’Andrea,et al.  Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. , 2012, Genes & development.

[59]  Sebastian A. Wagner,et al.  RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response , 2013, The Journal of cell biology.

[60]  C. Bishop,et al.  A novel ubiquitin ligase is deficient in Fanconi anemia , 2003, Nature Genetics.

[61]  N. Mailand,et al.  ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA , 2013, Cell.

[62]  N. Dantuma,et al.  Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. , 2012, Trends in cell biology.

[63]  S. Jentsch,et al.  Protein Group Modification and Synergy in the SUMO Pathway as Exemplified in DNA Repair , 2012, Cell.

[64]  Molly C. Kottemann,et al.  Fanconi anaemia and the repair of Watson and Crick DNA crosslinks , 2013, Nature.

[65]  Jingchuan Sun,et al.  Mechanism of Replication-Coupled DNA Interstrand Crosslink Repair , 2008, Cell.

[66]  K. J. Patel,et al.  Mouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1 in DNA Crosslink Repair , 2014, Molecular cell.