Isotone Projection Cones and Nonlinear Complementarity Problems

A brief introduction of complementarity problems is given. We discuss the notion of *-isotone projection cones and analyze how large is the class of these cones. We show that each generating *-isotone projection cone is superdual. We prove that a simplicial cone in \(R^{m}\) is *-isotone projection cone if and only if it is coisotone (i.e., it is the dual of an isotone projection cone. We consider the solvability of complementarity problems defined by *-isotone projection cones. The problem of finding nonzero solution of these problems is also presented.

[1]  G. Minty,et al.  ON A "MONOTONICITY" METHOD FOR THE SOLUTION OF NONLINEAR EQUATIONS IN BANACH SPACES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Cottle Note on a Fundamental Theorem in Quadratic Programming , 1964 .

[3]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[4]  S. Z. N'emeth A duality between the metric projection onto a convex cone and the metric projection onto its dual in Hilbert spaces , 2012, 1212.5438.

[5]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[6]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[7]  F. Browder Continuity properties of monotone nonlinear operators in Banach spaces , 1964 .

[8]  Sandor Z. Németh,et al.  Regular exceptional family of elements with respect to isotone projection cones in Hilbert spaces and complementarity problems , 2008, Optim. Lett..

[9]  W. S. Dorn,et al.  Self-Dual Quadratic Programs , 1961 .

[10]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[11]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[12]  Richaard W. Cottle Nonlinear Programs with Positively Bounded Jacobians , 1966 .

[13]  Mujahid Abbas,et al.  Solving nonlinear complementarity problems by isotonicity of the metric projection , 2012 .

[14]  Sandor Nemeth,et al.  A duality between the metric projection onto a convex cone and the metric projection onto its dual , 2012 .

[15]  G. Isac,et al.  Projection methods, isotone projection cones, and the complementarity problem , 1990 .

[16]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[17]  G. Isac,et al.  Every generating isotone projection cone is latticial and correct , 1990 .

[18]  Anthony J. Kearsley Projections Onto Order Simplexes and Isotonic Regression , 2006, Journal of research of the National Institute of Standards and Technology.

[19]  C. S. Lalitha,et al.  Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization , 2013 .

[20]  P. Marcotte APPLICATION OF KHOBOTOVS ALGORITHM TO VARIATIONAL INEQUALITIES ANT) NETWORK EQUILIBRIUM PROBLEMS , 1991 .

[21]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[22]  G. Isac,et al.  Isotone projection cones in Euclidean spaces , 1991 .

[23]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[24]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[25]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[26]  Q. Ansari,et al.  Some Equivalences Among Nonlinear Complementarity Problems, Least-Element Problems, and Variational Inequality Problems in Ordered Spaces , 2011 .

[27]  M. Sibony Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone , 1970 .

[28]  Sandor Nemeth,et al.  Iterative methods for nonlinear complementarity problems on isotone projection cones , 2009 .

[29]  Zhaoqi Wu,et al.  Characterizations of perturbations of spectra of 2×2 upper triangular operator matrices , 2012 .

[30]  Defeng Sun,et al.  A class of iterative methods for solving nonlinear projection equations , 1996 .

[31]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[32]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[33]  Sandor Nemeth,et al.  Inequalities Characterizing Coisotone Cones in Euclidean Spaces , 2007 .

[34]  M. Fiedler Special matrices and their applications in numerical mathematics , 1986 .

[35]  G. Isac,et al.  Monotonicity of metric projections onto positive cones of ordered Euclidean spaces , 1986 .