Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis

[1]  J. Coresh,et al.  A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease , 2017, Nature Medicine.

[2]  Masayuki Yamamoto,et al.  Nuclear Factor Erythroid 2-Related Factor 2 Drives Podocyte-Specific Expression of Peroxisome Proliferator-Activated Receptor γ Essential for Resistance to Crescentic GN. , 2016, Journal of the American Society of Nephrology : JASN.

[3]  R. Gregory,et al.  A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression , 2015, Cell.

[4]  E. van Rooij,et al.  Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury , 2014, Cardiovascular research.

[5]  D. Webb,et al.  Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. , 2014, Journal of the American Society of Nephrology : JASN.

[6]  Fang Liu,et al.  miR-92a family and their target genes in tumorigenesis and metastasis. , 2014, Experimental cell research.

[7]  S. Boulkroun,et al.  Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice , 2014, Circulation research.

[8]  Y. Colin,et al.  Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice , 2014, Kidney international.

[9]  Harsh Dweep,et al.  miRWalk database for miRNA-target interactions. , 2014, Methods in molecular biology.

[10]  E. van Rooij,et al.  Inhibition of MicroRNA-92a Protects Against Ischemia/Reperfusion Injury in a Large-Animal Model , 2013, Circulation.

[11]  W. Hung,et al.  STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells , 2013, British Journal of Cancer.

[12]  A. Pozzi,et al.  Integrins in kidney disease. , 2013, Journal of the American Society of Nephrology : JASN.

[13]  M. Boerries,et al.  Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks. , 2013, Kidney international.

[14]  D. Salant,et al.  Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis , 2013, Kidney international.

[15]  C. Englert,et al.  Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1 , 2013, Nature Medicine.

[16]  H. Augustin,et al.  Histone Deacetylase 9 Promotes Angiogenesis by Targeting the Antiangiogenic MicroRNA-17–92 Cluster in Endothelial Cells , 2013, Arteriosclerosis, Thrombosis and Vascular Biology.

[17]  C. Kesavan,et al.  Systemic administration of an antagomir designed to inhibit miR-92, a regulator of angiogenesis, failed to modulate skeletal anabolic response to mechanical loading. , 2013, Physiological research.

[18]  L. Harper,et al.  Complications of long-term therapy for ANCA-associated systemic vasculitis , 2012, Nature Reviews Nephrology.

[19]  Gabriel Wong,et al.  Stem Cell Marker (Nanog) and Stat-3 Signaling Promote MicroRNA-21 Expression and Chemoresistance in Hyaluronan/CD44-activated Head and Neck Squamous Cell Carcinoma Cells , 2011, Oncogene.

[20]  S. Germain,et al.  Erratum: Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis , 2011, Nature Medicine.

[21]  P. Merkel,et al.  A model to predict cardiovascular events in patients with newly diagnosed Wegener's granulomatosis and microscopic polyangiitis , 2011, Arthritis care & research.

[22]  Kevin Struhl,et al.  STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. , 2010, Molecular cell.

[23]  Stefanie Dimmeler,et al.  Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. , 2010, Blood.

[24]  B. Smeets,et al.  Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. , 2009, Journal of the American Society of Nephrology : JASN.

[25]  C. Ferro,et al.  Increased incidence of cardiovascular events in patients with antineutrophil cytoplasmic antibody-associated vasculitides: a matched-pair cohort study. , 2009, Arthritis and rheumatism.

[26]  Stefanie Dimmeler,et al.  MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice , 2009, Science.

[27]  R. Speich,et al.  Interleukin-6 Modulates the Expression of the Bone Morphogenic Protein Receptor Type II Through a Novel STAT3–microRNA Cluster 17/92 Pathway , 2009, Circulation research.

[28]  J. Mendell miRiad Roles for the miR-17-92 Cluster in Development and Disease , 2008, Cell.

[29]  Y. Sado,et al.  Podocytes contribute to the formation of glomerular crescents. , 2008, Journal of the American Society of Nephrology : JASN.

[30]  W. Gerald,et al.  Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. , 2007, The Journal of clinical investigation.

[31]  L. Luo,et al.  A global double‐fluorescent Cre reporter mouse , 2007, Genesis.

[32]  Jörg Hackermüller,et al.  Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. , 2007, Blood.

[33]  R. Flavell,et al.  Role of STAT3 in liver regeneration: survival, DNA synthesis, inflammatory reaction and liver mass recovery , 2007, Laboratory Investigation.

[34]  Bianca Sperl,et al.  Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. , 2006, Chemistry & biology.

[35]  H. Bojar,et al.  STAT5 phosphorylation in malignant melanoma is important for survival and is mediated through SRC and JAK1 kinases. , 2006, The Journal of investigative dermatology.

[36]  Matthias Kretzler,et al.  Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice , 2006, Nature Medicine.

[37]  T. Srivastava,et al.  Cell-cycle regulatory proteins in the podocyte in collapsing glomerulopathy in children. , 2006, Kidney international.

[38]  A. Moreau,et al.  [Crescentic glomerulonephritis]. , 2006, Nephrologie & therapeutique.

[39]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[40]  P. Bruneval,et al.  Podocyte involvement in human immune crescentic glomerulonephritis. , 2005, Kidney international.

[41]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[42]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[43]  K. Moon,et al.  Cell-cycle mechanisms involved in podocyte proliferation in cellular lesion of focal segmental glomerulosclerosis. , 2004, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[44]  M. Le Hir,et al.  J Am Soc Nephrol 15: 61–67, 2004 Podocytes Populate Cellular Crescents in a Murine Model of Inflammatory Glomerulonephritis , 2003 .

[45]  J. Schwartz,et al.  Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. , 2003, The New England journal of medicine.

[46]  S. Shankland,et al.  The role of cell cycle proteins in Glomerular disease. , 2003, Seminars in nephrology.

[47]  P. Bruneval,et al.  Glomerular epithelial-mesenchymal transdifferentiation in pauci-immune crescentic glomerulonephritis. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[48]  L. Holzman,et al.  Inducible podocyte-specific gene expression in transgenic mice. , 2003, Journal of the American Society of Nephrology : JASN.

[49]  Huang Shao,et al.  Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor. , 2003, Cancer research.

[50]  L. Holzman,et al.  Podocyte‐specific expression of cre recombinase in transgenic mice , 2003, Genesis.

[51]  Matthias Kretzler,et al.  Cell biology of the glomerular podocyte. , 2003, Physiological reviews.

[52]  C. Betsholtz,et al.  A new method for large scale isolation of kidney glomeruli from mice. , 2002, The American journal of pathology.

[53]  D. Aaronson,et al.  A Road Map for Those Who Don't Know JAK-STAT , 2002, Science.

[54]  C. Alpers,et al.  Podocyte expression of the CDK-inhibitor p57 during development and disease. , 2001, Kidney international.

[55]  V. D’Agati,et al.  Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. , 2000, Kidney international.

[56]  M. Nagata,et al.  Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies. , 2000, Kidney international.

[57]  S. Shankland,et al.  Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. , 2000, American journal of physiology. Renal physiology.

[58]  K. Nitta,et al.  Glomerular expression of cell-cycle-regulatory proteins in human crescentic glomerulonephritis , 1999, Virchows Archiv.

[59]  K. Nakayama,et al.  Cell cycle regulation and differentiation in the human podocyte lineage. , 1998, The American journal of pathology.

[60]  S. Elledge,et al.  Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. , 1998, Genes & development.

[61]  J. Grandis,et al.  Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. , 1998, The Journal of clinical investigation.

[62]  D. Nathans,et al.  In vitro activation of Stat3 by epidermal growth factor receptor kinase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Massagué,et al.  Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. , 1995, Genes & development.

[64]  S. Elledge,et al.  p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. , 1995, Genes & development.

[65]  F. Gudat,et al.  Podocytes loose their adhesive phenotype in focal segmental glomerulosclerosis. , 1995, Clinical nephrology.

[66]  J. Darnell,et al.  Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. , 1994, Science.

[67]  C. Schindler,et al.  Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. , 1994, Science.

[68]  T. Kishimoto Signal transduction through homo- or heterodimers of gp130. , 1994, Stem cells.

[69]  P. Heinrich,et al.  Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level , 1993, Molecular and cellular biology.

[70]  W. Couser Rapidly progressive glomerulonephritis: classification, pathogenetic mechanisms, and therapy. , 1988, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[71]  J. Coresh,et al.  A tripartite complex of suPAR, APOL1 risk variants and alpha(v)beta(3) integrin on podocytes mediates chronic kidney disease , 2022 .