Initiation of HIV Reverse Transcription

Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

[1]  X. Zhuang,et al.  Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription , 2010, Nature Structural &Molecular Biology.

[2]  G. Beilhartz,et al.  N348I in HIV-1 Reverse Transcriptase Can Counteract the Nevirapine-mediated Bias toward RNase H Cleavage during Plus-strand Initiation* , 2010, The Journal of Biological Chemistry.

[3]  K. Musier-Forsyth,et al.  Formation of the tRNALys packaging complex in HIV‐1 , 2010, FEBS letters.

[4]  C. Isel,et al.  A U5 repressor of reverse transcription is required for optimal HIV-1 infectivity and replication , 2009, Retrovirology.

[5]  L. Kleiman,et al.  The contribution of the primer activation signal to differences between Gag- and NCp7-facilitated tRNA(Lys3) annealing in HIV-1. , 2009, Virology.

[6]  C. Tisné,et al.  Design of tRNA(Lys)3 ligands: fragment evolution and linker selection guided by NMR spectroscopy. , 2009, Chemistry.

[7]  Kristen K. Dang,et al.  Architecture and Secondary Structure of an Entire HIV-1 RNA Genome , 2009, Nature.

[8]  L. Kleiman,et al.  Roles of Gag and NCp7 in facilitating tRNA(Lys)(3) Annealing to viral RNA in human immunodeficiency virus type 1. , 2009, Journal of virology.

[9]  S. Bernacchi,et al.  Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors , 2009, Microbiology and Molecular Biology Reviews.

[10]  B. Berkhout,et al.  Stringent testing identifies highly potent and escape‐proof anti‐HIV short hairpin RNAs , 2009, The journal of gene medicine.

[11]  Franck A. P. Vendeix,et al.  The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs , 2009, Nucleic acids research.

[12]  K. Musier-Forsyth,et al.  Inability of human immunodeficiency virus type 1 produced in murine cells to selectively incorporate primer formula. , 2008, Journal of virology.

[13]  M. Malim,et al.  APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts , 2008, PLoS pathogens.

[14]  L. Kleiman,et al.  Interactions of reverse transcriptase sequences in Pol with Gag and LysRS in the HIV-1 tRNALys3 packaging/annealing complex. , 2008, Virology.

[15]  R. Gorelick,et al.  Mutations in Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Zinc Fingers Cause Premature Reverse Transcription , 2008, Journal of Virology.

[16]  J. Darlix,et al.  The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation , 2008, Nucleic acids research.

[17]  S. Conticello The AID/APOBEC family of nucleic acid mutators , 2008, Genome Biology.

[18]  B. Berkhout,et al.  HIV-1 reverse transcription initiation: a potential target for novel antivirals? , 2008, Virus research.

[19]  Elio A. Abbondanzieri,et al.  Dynamic binding orientations direct activity of HIV reverse transcriptase , 2008, Nature.

[20]  Morgan C. Giddings,et al.  High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States , 2008, PLoS biology.

[21]  Mark Yeager,et al.  The structural biology of HIV assembly. , 2008, Current opinion in structural biology.

[22]  J. Darlix,et al.  Nucleocapsid mutations turn HIV-1 into a DNA-containing virus , 2008, Nucleic acids research.

[23]  B. Berkhout,et al.  Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference , 2007, Journal of Virology.

[24]  D. Harrich,et al.  Cell Factors Stimulate Human Immunodeficiency Virus Type 1 Reverse Transcription In Vitro , 2007, Journal of Virology.

[25]  J. Puglisi,et al.  Probing the conformation of human tRNA3 Lys in solution by NMR , 2007, FEBS letters.

[26]  K. Musier-Forsyth,et al.  Critical Role of Helix 4 of HIV-1 Capsid C-terminal Domain in Interactions with Human Lysyl-tRNA Synthetase* , 2007, Journal of Biological Chemistry.

[27]  A. Gronenborn,et al.  Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G , 2007, Nucleic acids research.

[28]  C. Tisné,et al.  New insights into the formation of HIV-1 reverse transcription initiation complex. , 2007, Biochimie.

[29]  L. Kleiman,et al.  Inhibition of initiation of reverse transcription in HIV-1 by human APOBEC3F. , 2007, Virology.

[30]  R. Gorelick,et al.  The Interaction of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleocapsid Inhibits tRNA3Lys Annealing to Viral RNA , 2007, Journal of Virology.

[31]  R. Gorelick,et al.  Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription , 2007, Nucleic acids research.

[32]  S. Guadagnini,et al.  HIV‐1 DNA Flap formation promotes uncoating of the pre‐integration complex at the nuclear pore , 2007, The EMBO journal.

[33]  B. Barton,et al.  Anti HIV-1 virucidal activity of polyamide nucleic acid-membrane transducing peptide conjugates targeted to primer binding site of HIV-1 genome. , 2007, Virology.

[34]  C. Tisné,et al.  NMR-guided fragment-based approach for the design of tRNA(Lys3) ligands. , 2007, Angewandte Chemie.

[35]  M. Mougel,et al.  Fully-spliced HIV-1 RNAs are reverse transcribed with similar efficiencies as the genomic RNA in virions and cells, but more efficiently in AZT-treated cells , 2007, Retrovirology.

[36]  Roland Marquet,et al.  HIV-1 reverse transcriptase inhibitors , 2007, Applied Microbiology and Biotechnology.

[37]  D. Hazuda,et al.  HIV-1 Reverse Transcriptase Plus-strand Initiation Exhibits Preferential Sensitivity to Non-nucleoside Reverse Transcriptase Inhibitors in Vitro* , 2007, Journal of Biological Chemistry.

[38]  M. Malim,et al.  APOBEC-mediated viral restriction: not simply editing? , 2007, Trends in biochemical sciences.

[39]  H. Huthoff,et al.  The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation , 2007, Nucleic acids research.

[40]  M. Mirande,et al.  Viral Hijacking of Mitochondrial Lysyl-tRNA Synthetase , 2006, Journal of Virology.

[41]  L. Kleiman,et al.  Inhibition of tRNA₃(Lys)-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. , 2006, Journal of virology.

[42]  M. Malim,et al.  Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination , 2006, Journal of Virology.

[43]  K. Musier-Forsyth,et al.  In Vitro Characterization of the Interaction between HIV-1 Gag and Human Lysyl-tRNA Synthetase* , 2006, Journal of Biological Chemistry.

[44]  O. Nikolaitchik,et al.  Effects of Mutations in the Human Immunodeficiency Virus Type 1 gag Gene on RNA Packaging and Recombination , 2006, Journal of Virology.

[45]  C. Isel,et al.  Nucleoside and nucleotide inhibitors of HIV-1 replication , 2006, Cellular and Molecular Life Sciences CMLS.

[46]  Florence Guillière,et al.  NMR-based identification of peptides that specifically recognize the d-arm of tRNA. , 2005, Biochimie.

[47]  A. Das,et al.  Alternative tRNA Priming of Human Immunodeficiency Virus Type 1 Reverse Transcription Explains Sequence Variation in the Primer-Binding Site That Has Been Attributed to APOBEC3G Activity , 2005, Journal of Virology.

[48]  C. Ehresmann,et al.  First Snapshots of the HIV-1 RNA Structure in Infected Cells and in Virions* , 2004, Journal of Biological Chemistry.

[49]  Shan Cen,et al.  The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA , 2004, Retrovirology.

[50]  B. Berkhout,et al.  Forced Selection of a Human Immunodeficiency Virus Type 1 Variant That Uses a Non-Self tRNA Primer for Reverse Transcription: Involvement of Viral RNA Sequences and the Reverse Transcriptase Enzyme , 2004, Journal of Virology.

[51]  R. Marquet,et al.  Primer unblocking by HIV-1 reverse transcriptase and resistance to nucleoside RT inhibitors (NRTIs). , 2004, The international journal of biochemistry & cell biology.

[52]  C. Ehresmann,et al.  Structural Variability of the Initiation Complex of HIV-1 Reverse Transcription* , 2004, Journal of Biological Chemistry.

[53]  M. Malim,et al.  Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins , 2004, Current Biology.

[54]  L. Kleiman,et al.  The Interaction between HIV-1 Gag and APOBEC3G* , 2004, Journal of Biological Chemistry.

[55]  T. Steitz,et al.  Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Sunghoon Kim,et al.  Cellular Distribution of Lysyl-tRNA Synthetase and Its Interaction with Gag during Human Immunodeficiency Virus Type 1 Assembly , 2004, Journal of Virology.

[57]  Karin Musier-Forsyth,et al.  Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. , 2004, Journal of molecular biology.

[58]  L. Kleiman,et al.  The selective packaging and annealing of primer tRNALys3 in HIV-1. , 2004, Current HIV research.

[59]  Ben Berkhout,et al.  Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition , 2004, Journal of Virology.

[60]  L. Kleiman,et al.  Ability of Wild-Type and Mutant Lysyl-tRNA Synthetase To Facilitate tRNALys Incorporation into Human Immunodeficiency Virus Type 1 , 2004, Journal of Virology.

[61]  B. Roques,et al.  The Annealing Mechanism of HIV-1 Reverse Transcription Primer onto the Viral Genome* , 2004, Journal of Biological Chemistry.

[62]  C. Ehresmann,et al.  Structure–function relationships of the initiation complex of HIV‐1 reverse transcription: the case of mutant viruses using tRNAHis as primer , 2003 .

[63]  L. Kleiman,et al.  Specific Inhibition of the Synthesis of Human Lysyl-tRNA Synthetase Results in Decreases in tRNALys Incorporation, tRNA3LysAnnealing to Viral RNA, and Viral Infectivity in Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[64]  S. Harvey,et al.  Probing the Importance of tRNA Anticodon: Human Immunodeficiency Virus Type 1 (HIV-1) RNA Genome Complementarity with an HIV-1 That Selects tRNAGlu for Replication , 2003, Journal of Virology.

[65]  K. Musier-Forsyth,et al.  The Interaction between HIV-1 Gag and Human Lysyl-tRNA Synthetase during Viral Assembly* , 2003, Journal of Biological Chemistry.

[66]  C. Ehresmann,et al.  Effects of tRNA 3 Lys aminoacylation on the initiation of HIV-1 reverse transcription. , 2003, Biochimie.

[67]  B. Roques,et al.  Specific recognition of primer tRNA Lys 3 by HIV-1 nucleocapsid protein: involvement of the zinc fingers and the N-terminal basic extension. , 2003, Biochimie.

[68]  A. E. Rosen,et al.  Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. , 2003, The Journal of biological chemistry.

[69]  C. Ehresmann,et al.  Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription? , 2003, Nucleic acids research.

[70]  M. Mirande,et al.  Functional Dissection of the Eukaryotic-specific tRNA-interacting Factor of Lysyl-tRNA Synthetase* , 2003, The Journal of Biological Chemistry.

[71]  A. Kaplan,et al.  The Dimer Interfaces of Protease and Extra-Protease Domains Influence the Activation of Protease and the Specificity of GagPol Cleavage , 2003, Journal of Virology.

[72]  R. Surabhi,et al.  RNA Interference Directed against Viral and Cellular Targets Inhibits Human Immunodeficiency Virus Type 1 Replication , 2002, Journal of Virology.

[73]  Sunghoon Kim,et al.  Retrovirus-Specific Packaging of Aminoacyl-tRNA Synthetases with Cognate Primer tRNAs , 2002, Journal of Virology.

[74]  V. Pandey,et al.  PNA targeting the PBS and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3(Lys) in the virions and inhibits HIV-1 replication. , 2002, Virology.

[75]  C. Ehresmann,et al.  Direct and Indirect Contributions of RNA Secondary Structure Elements to the Initiation of HIV-1 Reverse Transcription* , 2002, The Journal of Biological Chemistry.

[76]  B. Cullen,et al.  Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference , 2002, Journal of Virology.

[77]  L. Kleiman,et al.  Effect of altering the tRNA(Lys)(3) concentration in human immunodeficiency virus type 1 upon its annealing to viral RNA, GagPol incorporation, and viral infectivity. , 2002, Journal of virology.

[78]  E. Stavnezer,et al.  Replication of Avian Sarcoma Virus In Vivo Requires an Interaction between the Viral RNA and the TψC Loop of the tRNATrp Primer , 2002, Journal of Virology.

[79]  K. Musier-Forsyth,et al.  Specific zinc-finger architecture required for HIV-1 nucleocapsid protein's nucleic acid chaperone function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  C. Ehresmann,et al.  Primer Unblocking and Rescue of DNA Synthesis by Azidothymidine (AZT)-resistant HIV-1 Reverse Transcriptase , 2002, The Journal of Biological Chemistry.

[81]  K. Musier-Forsyth,et al.  Correlation Between tRNALys3 Aminoacylation and Its Incorporation into HIV-1* , 2002, The Journal of Biological Chemistry.

[82]  B. Berkhout,et al.  The tRNA Primer Activation Signal in the Human Immunodeficiency Virus Type 1 Genome Is Important for Initiation and Processive Elongation of Reverse Transcription , 2002, Journal of Virology.

[83]  B. Berkhout,et al.  Switching the in vitro tRNA usage of HIV-1 by simultaneous adaptation of the PBS and PAS. , 2002, RNA.

[84]  M. Mirande,et al.  The N-terminal Domain of Mammalian Lysyl-tRNA Synthetase Is a Functional tRNA-binding Domain* , 2002, The Journal of Biological Chemistry.

[85]  C. Ehresmann,et al.  The Emergence of Different Resistance Mechanisms toward Nucleoside Inhibitors Is Explained by the Properties of the Wild Type HIV-1 Reverse Transcriptase* , 2001, The Journal of Biological Chemistry.

[86]  T. Talele,et al.  Destabilization of tRNA3(Lys) from the primer-binding site of HIV-1 genome by anti-A loop polyamide nucleotide analog. , 2001, Nucleic acids research.

[87]  K. Musier-Forsyth,et al.  HIV-1 nucleocapsid protein zinc finger structures induce tRNA(Lys,3) structural changes but are not critical for primer/template annealing. , 2001, Journal of molecular biology.

[88]  M. Ventura,et al.  Inhibition of HIV-1 replication in vitro and in human infected cells by modified antisense oligonucleotides targeting the tRNALys3/RNA initiation complex. , 2001, Antisense & nucleic acid drug development.

[89]  B. Berkhout,et al.  Initiation of HIV-1 Reverse Transcription Is Regulated by a Primer Activation Signal* , 2001, The Journal of Biological Chemistry.

[90]  Frédéric Freund,et al.  Initiation of HIV-2 reverse transcription: a secondary structure model of the RNA?tRNALys3 duplex , 2001, Nucleic Acids Res..

[91]  K. Musier-Forsyth,et al.  Incorporation of Lysyl-tRNA Synthetase into Human Immunodeficiency Virus Type 1 , 2001, Journal of Virology.

[92]  B. Roques,et al.  Heteronuclear NMR studies of the interaction of tRNA3Lys with HIV-1 nucleocapsid protein , 2001 .

[93]  C. Ehresmann,et al.  The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. , 2000, RNA.

[94]  B. Carlson,et al.  Association of Human Immunodeficiency Virus Type 1 Vif with RNA and Its Role in Reverse Transcription , 2000, Journal of Virology.

[95]  C. Ehresmann,et al.  NMR and biochemical characterization of recombinant human tRNA(Lys)3 expressed in Escherichia coli: identification of posttranscriptional nucleotide modifications required for efficient initiation of HIV-1 reverse transcription. , 2000, RNA.

[96]  C. Ehresmann,et al.  Inhibition of the initiation of HIV-1 reverse transcription by 3'-azido-3'-deoxythymidine. Comparison with elongation. , 2000, The Journal of biological chemistry.

[97]  M. Wainberg,et al.  Sequences within Pr160gag-pol affecting the selective packaging of primer tRNA(Lys3) into HIV-1. , 2000, Journal of molecular biology.

[98]  Luc Montagnier,et al.  HIV-1 Genome Nuclear Import Is Mediated by a Central DNA Flap , 2000, Cell.

[99]  A. Engelman,et al.  Structure-Based Mutagenesis of the Human Immunodeficiency Virus Type 1 DNA Attachment Site: Effects on Integration and cDNA Synthesis , 1999, Journal of Virology.

[100]  M. Wainberg,et al.  The Role of Pr55gag in the Annealing of tRNA3Lys to Human Immunodeficiency Virus Type 1 Genomic RNA , 1999, Journal of Virology.

[101]  C. Ehresmann,et al.  The Human Immunodeficiency Virus Type 1 Gag Polyprotein Has Nucleic Acid Chaperone Activity: Possible Role in Dimerization of Genomic RNA and Placement of tRNA on the Primer Binding Site , 1999, Journal of Virology.

[102]  C. Morrow,et al.  Identification of a human immunodeficiency virus type 1 that stably uses tRNALys1,2 rather than tRNALys,3 for initiation of reverse transcription. , 1999, Virology.

[103]  C. Morrow,et al.  Genetic Analysis of a Unique Human Immunodeficiency Virus Type 1 (HIV-1) with a Primer Binding Site Complementary to tRNAMet Supports a Role for U5-PBS Stem-Loop RNA Structures in Initiation of HIV-1 Reverse Transcription , 1999, Journal of Virology.

[104]  E. Westhof,et al.  Structural basis for the specificity of the initiation of HIV‐1 reverse transcription , 1999, The EMBO journal.

[105]  P. Barbara,et al.  Intra-tRNA distance measurements for nucleocapsid proteindependent tRNA unwinding during priming of HIV reverse transcription. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[106]  D. Davis,et al.  Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine. , 1999, Journal of molecular biology.

[107]  J. Puglisi,et al.  HIV-1 A-rich RNA loop mimics the tRNA anticodon structure , 1998, Nature Structural Biology.

[108]  D. Esposito,et al.  Sequence specificity of viral end DNA binding by HIV‐1 integrase reveals critical regions for protein–DNA interaction , 1998, The EMBO journal.

[109]  C. Ehresmann,et al.  Contacts between Reverse Transcriptase and the Primer Strand Govern the Transition from Initiation to Elongation of HIV-1 Reverse Transcription* , 1998, The Journal of Biological Chemistry.

[110]  S. Thrall,et al.  Pre-steady-state kinetic characterization of RNA-primed initiation of transcription by HIV-1 reverse transcriptase and analysis of the transition to a processive DNA-primed polymerization mode. , 1998, Biochemistry.

[111]  M. Wainberg,et al.  Mechanistic Studies of Early Pausing Events during Initiation of HIV-1 Reverse Transcription* , 1998, The Journal of Biological Chemistry.

[112]  J. Kjems,et al.  Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions. , 1998, Nucleic acids research.

[113]  S. Litvak,et al.  Initiation of in vitro reverse transcription from tRNALys3 on HIV‐1 or HIV‐2 RNAs by both type 1 and 2 reverse transcriptases , 1998, FEBS letters.

[114]  L. Maquat,et al.  Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. , 1998, RNA.

[115]  E. Arts,et al.  Mutating a Region of HIV-1 Reverse Transcriptase Implicated in tRNALys-3 Binding and the Consequences for (−)-Strand DNA Synthesis* , 1998, The Journal of Biological Chemistry.

[116]  C. Morrow,et al.  Genetic analysis of the U5-PBS of a novel HIV-1 reveals multiple interactions between the tRNA and RNA genome required for initiation of reverse transcription. , 1998, RNA.

[117]  C. Ehresmann,et al.  Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex. , 1998, Nucleic acids research.

[118]  E. Westhof,et al.  Modified nucleotides of tRNAPro restrict interactions in the binary primer/template complex of M-MuLV. , 1998, Journal of molecular biology.

[119]  R. Lee,et al.  Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. , 1998, Biochemistry.

[120]  J. Wakefield,et al.  Nucleotide substitutions within U5 are critical for efficient reverse transcription of human immunodeficiency virus type 1 with a primer binding site complementary to tRNA(His) , 1997, Journal of virology.

[121]  M. Wainberg,et al.  The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity , 1997, Journal of virology.

[122]  M. Wainberg,et al.  Effect of mutations in the nucleocapsid protein (NCp7) upon Pr160(gag-pol) and tRNA(Lys) incorporation into human immunodeficiency virus type 1 , 1997, Journal of virology.

[123]  P. Agris,et al.  Unconventional structure of tRNA(Lys)SUU anticodon explains tRNA's role in bacterial and mammalian ribosomal frameshifting and primer selection by HIV-1. , 1997, RNA.

[124]  C. Ehresmann,et al.  Two step synthesis of (-) strong-stop DNA by avian and murine reverse transcriptases in vitro. , 1997, Nucleic acids research.

[125]  M. Wainberg,et al.  Effects of mutations in Pr160gag-pol upon tRNA(Lys3) and Pr160gag-plo incorporation into HIV-1. , 1997, Journal of molecular biology.

[126]  M. Wainberg,et al.  Primer tRNA3Lys on the viral genome exists in unextended and two-base extended forms within mature human immunodeficiency virus type 1 , 1997, Journal of virology.

[127]  C. Morrow,et al.  Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met) , 1997, Journal of virology.

[128]  S. Hajduk,et al.  Nucleotide sequences within the U5 region of the viral RNA genome are the major determinants for an human immunodeficiency virus type 1 to maintain a primer binding site complementary to tRNA(His). , 1996, Virology.

[129]  C. Ehresmann,et al.  Binding and kinetic properties of HIV‐1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. , 1996, The EMBO journal.

[130]  M. Wainberg,et al.  Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[131]  M. Wainberg,et al.  Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro: studies of viral RNA molecules mutated in regions that flank the primer binding site , 1996, Journal of virology.

[132]  M. Wainberg,et al.  Effects of modifying the tRNA(3Lys) anticodon on the initiation of human immunodeficiency virus type 1 reverse transcription , 1996, Journal of virology.

[133]  R. Pomerantz,et al.  Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenviroments: an important stage for viral infection of nondividing cells , 1996, Journal of virology.

[134]  C. Ehresmann,et al.  Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA3(Lys). , 1996, Nucleic acids research.

[135]  C. Ehresmann,et al.  Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post‐transcriptional modifications of primer tRNA3Lys. , 1996, The EMBO journal.

[136]  J. Wakefield,et al.  Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His) , 1996, Journal of virology.

[137]  S. Goff,et al.  Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo , 1995, Journal of virology.

[138]  S. Hughes,et al.  Replication of avian leukosis viruses with mutations at the primer binding site: use of alternative tRNAs as primers , 1995, Journal of virology.

[139]  J. Wakefield,et al.  Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys) , 1995, Journal of virology.

[140]  Mary Lapadat-Tapolsky,et al.  Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1 , 1995, Nucleic Acids Res..

[141]  J. Steitz,et al.  Site‐specific crosslinking of 4‐thiouridine‐modified human tRNA(3Lys) to reverse transcriptase from human immunodeficiency virus type I. , 1995, The EMBO journal.

[142]  A. Das,et al.  Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys) , 1995, Journal of virology.

[143]  C. Sassetti,et al.  RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1 , 1995, Journal of virology.

[144]  C. Ehresmann,et al.  Initiation of Reverse Transcripion of HIV-1: Secondary Structure of the HIV-1 RNA/tRNA|rlmbopopnbop|Lys|clobop|3 (Template/Primer) Complex , 1995 .

[145]  H. Gross,et al.  HIV‐1 reverse transcriptase‐associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA. , 1995, The EMBO journal.

[146]  A. Engelman,et al.  An integration-defective U5 deletion mutant of human immunodeficiency virus type 1 reverts by eliminating additional long terminal repeat sequences , 1994, Journal of virology.

[147]  M. Wainberg,et al.  Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1 , 1994, Journal of virology.

[148]  M. Wainberg,et al.  Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication , 1994, Journal of virology.

[149]  M. Wainberg,et al.  Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles , 1994, Journal of virology.

[150]  C. Ehresmann,et al.  Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. , 1993, The Journal of biological chemistry.

[151]  J. Luban,et al.  Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays , 1993, Journal of virology.

[152]  J. Lovmand,et al.  Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication , 1993, Journal of virology.

[153]  J. DeStefano,et al.  Determinants of the RNase H cleavage specificity of human immunodeficiency virus reverse transcriptase. , 1993, Nucleic acids research.

[154]  J. Mak,et al.  Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1 , 1993, Journal of virology.

[155]  A. Panganiban,et al.  Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles , 1993, Journal of virology.

[156]  B. Berkhout,et al.  Secondary structure of the HIV-2 leader RNA comprising the tRNA-primer binding site. , 1993, Nucleic acids research.

[157]  R. Plasterk,et al.  Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. , 1993, Nucleic acids research.

[158]  C. Ehresmann,et al.  Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. , 1993, Journal of molecular biology.

[159]  D. Trono,et al.  Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses , 1992, Journal of virology.

[160]  F. Lori,et al.  Viral DNA carried by human immunodeficiency virus type 1 virions , 1992, Journal of virology.

[161]  B. Roques,et al.  Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[162]  M. Wainberg,et al.  Variable tRNA content in HIV-1IIIB. , 1992, Biochemical and biophysical research communications.

[163]  S. Harrison,et al.  Long-COVID Symptoms in Individuals Infected with Different SARS-CoV-2 Variants of Concern: A Systematic Review of the Literature , 2022, Viruses.

[164]  H. Kung,et al.  Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription , 1992, Journal of virology.

[165]  C. Gabus,et al.  Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. , 1988, The EMBO journal.

[166]  S. Goff,et al.  Isolation of a recombinant murine leukemia virus utilizing a new primer tRNA , 1986, Journal of virology.

[167]  David Baltimore,et al.  A detailed model of reverse transcription and tests of crucial aspects , 1979, Cell.

[168]  D. Bolognesi,et al.  Association of the viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. , 1971, Bibliotheca haematologica.

[169]  K. Musier-Forsyth,et al.  Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. , 2005, Progress in nucleic acid research and molecular biology.

[170]  C. Ehresmann,et al.  Structure-function relationships of the initiation complex of HIV-1 reverse transcription: the case of mutant viruses using tRNA(His) as primer. , 2003, Nucleic acids research.

[171]  M. Stevenson,et al.  Modulation of HIV-1 replication by RNA interference , 2002, Nature.

[172]  M. Wainberg,et al.  Structural and functional properties of the HIV-1 RNA-tRNA(Lys)3 primer complex annealed by the nucleocapsid protein: comparison with the heat-annealed complex. , 2002, RNA.

[173]  W D Wilson,et al.  Targeting RNA with small molecules. , 2000, Current medicinal chemistry.

[174]  M. Andreola,et al.  p66/p51 and p51/p51 recombinant forms of reverse transcriptase from human immunodeficiency virus type 1--interactions with primer tRNA(Lys3), initiation of cDNA synthesis, and effect of inhibitors. , 1998, European journal of biochemistry.

[175]  B. Berkhout Structure and function of the human immunodeficiency virus leader RNA. , 1996, Progress in nucleic acid research and molecular biology.

[176]  C. Ehresmann,et al.  tRNAs as primer of reverse transcriptases. , 1995, Biochimie.

[177]  C. Ehresmann,et al.  Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). , 1995, Journal of molecular biology.

[178]  J. Mak,et al.  Reverse transcriptase is an important factor for the primer tRNA selection in HIV-1. , 1994, Leukemia.