Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations
暂无分享,去创建一个
[1] Y. Ohta,et al. Degeneration through coalescence of the q-Painlevé VI equation , 1998 .
[2] Kazuo Okamoto. Studies on the Painlevé equations , 1986 .
[3] P. D. Val,et al. On the Kantor Group of a Set of Points in a Plane , 1937 .
[4] V. Kac. Infinite dimensional Lie algebras: Frontmatter , 1990 .
[5] H. Coxeter. Finite groups generated by reflections, and their subgroups generated by reflections , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] R. Fuchs,et al. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1907 .
[7] Ramani,et al. Do integrable mappings have the Painlevé property? , 1991, Physical review letters.
[8] I. Dolgachev,et al. Weyl groups and Cremona transformations , 1983 .
[9] E. Looijenga. Rational surfaces with an anti-canonical cycle , 1981 .
[10] Ramani,et al. Discrete versions of the Painlevé equations. , 1991, Physical review letters.
[11] M. Artin. On Enriques' surfaces , 1960 .
[12] Atushi Matumiya. On Some Hamiltonian Structures of Painleve Systems, III , 1997 .
[13] M. Jimbo,et al. A q-analog of the sixth Painlevé equation , 1995, chao-dyn/9507010.
[14] D. Ortland,et al. Point sets in projective spaces and theta functions , 1988 .
[15] I︠u︡. I. Manin,et al. Cubic forms; algebra, geometry, arithmetic , 1974 .
[16] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .