Large Astronomical Time Series Pre-processing for Classification Using Artificial Neural Networks

[1]  Benjamin Stappers,et al.  Comparing Multi-class, Binary and Hierarchical Machine Learning Classification schemes for variable stars , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  D. E. Rumelhart,et al.  chapter Parallel Distributed Processing, Exploration in the Microstructure of Cognition , 1986 .

[3]  Geoffrey I. Webb,et al.  Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification , 2014, 2014 IEEE International Conference on Data Mining.

[4]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[5]  George E. P. Box,et al.  Time Series Analysis: Box/Time Series Analysis , 2008 .

[6]  J. McCormac,et al.  K2 Variable Catalogue: Variable Stars and Eclipsing Binaries in K2 Campaigns 1 and 0 , 2015, 1502.04004.

[7]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[8]  T. Schreiber,et al.  Discrimination power of measures for nonlinearity in a time series , 1997, chao-dyn/9909043.

[9]  Yoshua Bengio,et al.  Object Recognition with Gradient-Based Learning , 1999, Shape, Contour and Grouping in Computer Vision.

[10]  Patrick Schäfer The BOSS is concerned with time series classification in the presence of noise , 2014, Data Mining and Knowledge Discovery.

[11]  D. J. A. Brown,et al.  K2 VARIABLE CATALOGUE I: A CATALOGUE OF VARIABLE STARS FROM K2 FIELD 0 , 2014 .

[12]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[13]  N. N. Kireeva,et al.  General catalogue of variable stars: Version GCVS 5.1 , 2017 .

[14]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[15]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[16]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[17]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[18]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[19]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[20]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  John Cristian Borges Gamboa,et al.  Deep Learning for Time-Series Analysis , 2017, ArXiv.

[22]  Eamonn J. Keogh,et al.  Time Series Classification under More Realistic Assumptions , 2013, SDM.

[23]  Tim Oates,et al.  Time series classification from scratch with deep neural networks: A strong baseline , 2016, 2017 International Joint Conference on Neural Networks (IJCNN).

[24]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[25]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[26]  El-Ghazali Talbi,et al.  Optimization of deep neural networks: a survey and unified taxonomy , 2020 .

[27]  Yixin Chen,et al.  Multi-Scale Convolutional Neural Networks for Time Series Classification , 2016, ArXiv.

[28]  P. Škoda Optical Spectroscopy with the Technology of Virtual Observatory , 2011 .

[29]  Trisha Hinners,et al.  Machine Learning Techniques for Stellar Light Curve Classification , 2017, The Astronomical Journal.

[30]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[31]  Khadeejah A. Zamudio,et al.  Kepler: A Search for Terrestrial Planets - Kepler Data Characterization Handbook , 2016 .

[32]  Jason Lines,et al.  Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles , 2015, IEEE Trans. Knowl. Data Eng..

[33]  Eamonn J. Keogh,et al.  The UCR time series archive , 2018, IEEE/CAA Journal of Automatica Sinica.

[34]  Houshang Darabi,et al.  LSTM Fully Convolutional Networks for Time Series Classification , 2017, IEEE Access.

[35]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[36]  Ah Chung Tsoi,et al.  Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference , 2001, Machine Learning.

[37]  Germain Forestier,et al.  Deep learning for time series classification: a review , 2018, Data Mining and Knowledge Discovery.

[38]  Eamonn J. Keogh,et al.  The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances , 2016, Data Mining and Knowledge Discovery.

[39]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[40]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[41]  K. Borne,et al.  Supervised ensemble classification of Kepler variable stars , 2016, 1604.01355.

[42]  David Andrešič,et al.  Large Astronomical Time Series Pre-processing and Visualization for Classification using Artificial Neural Networks , 2019, 2019 IEEE 15th International Scientific Conference on Informatics.

[43]  Eamonn J. Keogh,et al.  CID: an efficient complexity-invariant distance for time series , 2013, Data Mining and Knowledge Discovery.