Numerical Methods for Mechanism and Manipulator Workspace Analysis

Numerical algorithms for mapping boundaries of mechanism and manipulator workspaces are developed and illustrated. Analytical criteria derived are applicable for both manipulators having the same number of input and output coordinates and redundantly controlled manipulators with a larger number of inputs than outputs. A numerical method is presented for finding an initial point on the boundary, from which a continuation method that accounts for simple and multiple bifurcation of one-dimensional solution curves is used. Planar and spatial manipulators are analyzed, determining both the exterior boundaries of workspaces and interior curves that represent local impediments to motion control.

[1]  K. Waldron,et al.  A Study of the Jacobian Matrix of Serial Manipulators , 1985 .

[2]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[3]  J. K. Wu,et al.  Dextrous Workspaces of Manipulators, Part 2: Computational Methods∗ , 1993 .

[4]  Edward J. Haug,et al.  Dextrous Workspaces of Manipulators. I. Analytical Criteria , 1992 .

[5]  Faydor L. Litvin,et al.  Application of theorem of implicit function system existence for analysis and synthesis of linkages , 1980 .

[6]  J. Spanos,et al.  Workspace Analysis of Regional Structures of Manipulators , 1985 .

[7]  Stephen Cameron,et al.  A study of the clash detection problem in robotics , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[8]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[9]  Ferdinand Freudenstein,et al.  On the Analysis and Synthesis of the Workspace of a Three-Link, Turning-Pair Connected Robot Arm , 1984 .

[10]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[11]  Carlos Canudas de Wit,et al.  Controllability issues of robots in singular configurations , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  E. Haug,et al.  Workspace analysis of multibody mechanical systems using continuation methods , 1989 .

[13]  Ying-Chien Tsai,et al.  Accessible Region and Synthesis of Robot Arms , 1981 .

[14]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[15]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[16]  Edward J. Haug,et al.  Operational Envelope of a Spatial Stewart Platform , 1997 .

[17]  R. C. Dix Book Reviews : Kinematics and Dynamics of Planar Machinery: B. Paul, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1979 , 1980 .

[18]  F. A. Adkins,et al.  Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces , 1996 .

[19]  Kenneth J. Waldron,et al.  The Workspaces of a Mechanical Manipulator , 1981 .

[20]  D. C. H. Yang,et al.  On the Workspace of Mechanical Manipulators , 1983 .