The E.T.PACK project: Towards a fully passive and consumable-less deorbit kit based on low-work-function tether technology
暂无分享,去创建一个
G. Sánchez-Arriaga | Martin Tajmar | S. Naghdi | K. Wätzig | J. Schilm | Enrico C. Lorenzini | E. Urgoiti | L. Tarabini Castellani | J. F. Plaza | A. Post | M. Tajmar | L. Castellani | E. Lorenzini | S. Naghdi | J. Schilm | G. Sánchez-Arriaga | E. Urgoiti | K. Wätzig | A. Post | J. F. Plaza
[1] G. Sánchez-Arriaga. Orbital motion theory and operational regimes for cylindrical emissive probes , 2017 .
[2] D. L. Jacobson,et al. Work Function Measurement of Lanthanum - Boron Compounds , 1978, IEEE Transactions on Plasma Science.
[3] Lorenzo Olivieri,et al. Study of dynamical stability of tethered systems during space tug maneuvers , 2017 .
[4] G. Sánchez-Arriaga,et al. Modeling and Performance of Electrodynamic Low-Work-Function Tethers with Photoemission Effects , 2018 .
[5] J. G. Laframboise. Theory of spherical and cylindrical Langmuir probes in a collisionless , 1966 .
[6] Gonzalo Sánchez Arriaga,et al. Analysis of thermionic bare tether operation regimes in passive mode , 2016 .
[7] J. Sanmartín,et al. Low Work-Function Coating for an Entirely Propellantless Bare Electrodynamic Tether , 2012, IEEE Transactions on Plasma Science.
[8] Piero Pianetta,et al. Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.
[9] G. Sánchez-Arriaga,et al. Impact of Nonideal Effects on Bare Electrodynamic Tether Performance , 2015 .
[10] Eduardo Ahedo,et al. Bare wire anodes for electrodynamic tethers , 1993 .
[11] J. Sanmartín,et al. Bare-tether cathodic contact through thermionic emission by low-work-function materials , 2012 .
[12] G. Sánchez-Arriaga,et al. Electrical model and optimal design scheme for low work-function tethers in thrust mode , 2020 .
[13] Les Johnson,et al. Propulsive Small Expendable Deployer System Experiment , 2000 .
[14] Hideo Hosono,et al. Field Emission of Electron Anions Clathrated in Subnanometer‐Sized Cages in [Ca24Al28O64]4+(4e–) , 2004 .
[15] Mario D. Grossi. Plasma Motor Generator (PMG) electrodynamic tether experiment , 1995 .
[16] S. D. Drell,et al. DRAG AND PROPULSION OF LARGE SATELLITES IN THE IONOSPHERE. AN ALFVEN PROPULSION ENGINE IN SPACE , 1965 .
[17] W. Boeck,et al. Thermionic emission from single-crystal filaments☆ , 1971 .
[18] R. Howe,et al. Engineering Ultra-Low Work Function of Graphene. , 2015, Nano letters.
[19] Hideo Hosono,et al. Work Function of a Room-Temperature, Stable Electride [Ca24Al28O64] 4+(e-)4. , 2008 .
[20] Sven G. Bilen,et al. Investigating Miniaturized Electrodynamic Tethers for Picosatellites and Femtosatellites , 2017 .
[21] C. Bonifazi,et al. The TSS‐1R Mission: Overview and scientific context , 1998 .
[22] G. Sánchez-Arriaga,et al. Optimal Design and Deorbiting Performance of Thermionic Tethers in Geostationary Transfer Orbits , 2017 .
[23] Juan R. Sanmartin,et al. Survival probability of round and tape tethers against debris impact , 2013 .
[24] Eric Choiniere. Theory and experimental evaluation of a consistent steady-state kinetic model for two-dimensional conductive structures in ionospheric plasmas with application to bare electrodynamic tethers in space , 2004 .
[25] T. Fisher,et al. Photo- and thermionic emission from potassium-intercalated carbon nanotube arrays , 2010 .
[26] L. Rand,et al. A Calcium Aluminate Electride Hollow Cathode , 2015, IEEE Transactions on Plasma Science.
[27] R. Nemanich,et al. Low temperature onset for thermionic emitters based on nitrogen incorporated UNCD films , 2009 .
[28] R. Forman. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode , 1976 .