A grooved planar ion trap design for scalable quantum information processing

We describe a new electrode design for a grooved surface-electrode ion trap, which is fabricated in printed-circuit-board technology with segmented electrodes. This design allows a laser beam to get through the central groove to avoid optical access blocking and laser scattering from the ion trap surface. The confining potentials are modeled both analytically and numerically. We optimize the radio frequency (rf) electrodes and dc electrodes to achieve the maximum trap depth for a given ion height above the trap electrodes. We also compare our design with the reality ion chip MI I for practical considerations. Comparison results show that our design is superior to MI I. This ion trap design may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.