A Lipschitzian error bound for monotone symmetric cone linear complementarity problem

We first discuss some properties of the solution set of a monotone symmetric cone linear complementarity problem (SCLCP), and then consider the limiting behaviour of a sequence of strictly feasible solutions within a wide neighbourhood of central trajectory for the monotone SCLCP. Under assumptions of strict complementarity and Slater’s condition, we provide four different characterizations of a Lipschitzian error bound for the monotone SCLCP in general Euclidean Jordan algebras. Thanks to the observation that a pair of primal-dual convex quadratic symmetric cone programming (CQSCP) problems can be exactly formulated as the monotone SCLCP, thus we obtain the same error bound results for CQSCP as a by-product.

[1]  M. Frei Analysis On Symmetric Cones , 2016 .

[2]  Manuel V. C. Vieira Interior-point methods based on kernel functions for symmetric optimization , 2012, Optim. Methods Softw..

[3]  Kees Roos,et al.  Kernel-Based Interior-Point Methods for Monotone Linear Complementarity Problems over Symmetric Cones , 2011, J. Optim. Theory Appl..

[4]  M. Gowda,et al.  The Cauchy interlacing theorem in simple Euclidean Jordan algebras and some consequences , 2011 .

[5]  Naihua Xiu,et al.  Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming , 2010, J. Optim. Theory Appl..

[6]  R. Sznajder,et al.  Schur complements, Schur determinantal and Haynsworth inertia formulas in Euclidean Jordan algebras , 2010 .

[7]  Sien Deng,et al.  Weak sharp minima revisited, Part III: error bounds for differentiable convex inclusions , 2008, Math. Program..

[8]  C. B. Chua,et al.  Analyticity of weighted central paths and error bounds for semidefinite programming , 2008, Math. Program..

[9]  Defeng Sun,et al.  Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras , 2008, Math. Oper. Res..

[10]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[11]  Renato D. C. Monteiro,et al.  Limiting behavior of the Alizadeh–Haeberly–Overton weighted paths in semidefinite programming , 2007, Optim. Methods Softw..

[12]  Michel Baes,et al.  Spectral Functions and Smoothing Techniques on Jordan Algebras: How algebraic techniques can help to design efficient optimization algorithms , 2009 .

[13]  Sien Deng,et al.  Weak sharp minima revisited, part II: application to linear regularity and error bounds , 2005, Math. Program..

[14]  F. Giannessi,et al.  Variational Analysis and Applications , 2005 .

[15]  K. Mccrimmon A Taste of Jordan Algebras , 2003 .

[16]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[17]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[18]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[19]  Shuzhong Zhang,et al.  On sensitivity of central solutions in semidefinite programming , 2001, Math. Program..

[20]  Jos F. Sturm,et al.  Error Bounds for Linear Matrix Inequalities , 1999, SIAM J. Optim..

[21]  L. Faybusovich Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .

[22]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[23]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[24]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[25]  J. Burkey,et al.  WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING , 1993 .