Coiflet systems and zero moments

The Coifman wavelets created by Daubechies (1992) have more zero moments than imposed by specifications. This results in systems with approximately equal numbers of zero scaling function and wavelet moments and gives a partitioning of the systems into three well-defined classes. The nonunique solutions are more complex than for Daubechies wavelets.

[1]  Robert Piessens,et al.  Calculation of the wavelet decomposition using quadrature formulae , 1992 .

[2]  A. Cohen,et al.  An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases , 1993 .

[3]  Peter N. Heller,et al.  The design of maximally smooth wavelets , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[4]  Olivier Rioul Regular wavelets: a discrete-time approach , 1993, IEEE Trans. Signal Process..

[5]  Andreas Antoniou,et al.  Improved iterative methods for the design of quadrature mirror-image filter banks , 1996 .

[6]  R. Wells,et al.  SOBOLEV REGULARITY FOR RANK M WAVELETSP , 1997 .

[7]  J.E. Odegard,et al.  New class of wavelets for signal approximation , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[8]  James D. Johnston,et al.  A filter family designed for use in quadrature mirror filter banks , 1980, ICASSP.

[9]  R. Crochiere,et al.  Quadrature mirror filter design in the time domain , 1984 .

[10]  Jun Tian,et al.  The mathematical theory and applications of biorthogonal Coifman wavelet systems , 1996 .

[11]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[12]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[13]  G. Beylkin,et al.  On the representation of operators in bases of compactly supported wavelets , 1992 .

[14]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[15]  R. A. Gopinath C. S. Burrus ON THE MOMENTS OF THE SCALING FUNCTION 0 , .

[16]  Charng-Kann Chen,et al.  Design of quadrature mirror filters with linear phase in the frequency domain , 1992 .

[17]  David K. Smith,et al.  Mathematical Programming: Theory and Algorithms , 1986 .

[18]  C. S. Burrus,et al.  Wavelet transforms and filter banks , 1993 .

[19]  D. Esteban,et al.  Application of quadrature mirror filters to split band voice coding schemes , 1977 .

[20]  I. Daubechies Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .

[22]  Ramesh A. Gopinath,et al.  On the Moments of the Scaling Function psi_0 , 1992 .

[23]  Jan E. Odegard,et al.  Nearly symmetric orthogonal wavelets with non-integer DC group delay , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.

[24]  V. Zingarelli,et al.  An analytical formula for the design of quadrature mirror filters , 1984 .

[25]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[26]  R. E. Crochiere Digital signal processor: Sub-band coding , 1981, The Bell System Technical Journal.

[27]  Michael Unser Approximation power of biorthogonal wavelet expansions , 1996, IEEE Trans. Signal Process..