Semiclassical mechanics of the Wigner 6j-symbol
暂无分享,去创建一个
Vincenzo Aquilanti | Robert G. Littlejohn | Hal M. Haggard | Nadir Jeevanjee | V. Aquilanti | R. Littlejohn | N. Jeevanjee | Austin Hedeman | Liang Yu | Liangying Yu | H. Haggard | A. Hedeman | Austin Hedeman
[1] V. Bargmann,et al. On the Representations of the Rotation Group , 1962 .
[2] Topological lattice models in four-dimensions , 1992, hep-th/9205090.
[3] M. Gutzwiller. Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .
[4] Klaus Schulten,et al. Semiclassical approximations to 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta An inverse problem in statistical mechanics Direct determination of the Iwasawa decomposition for noncompact , 1975 .
[5] J. Baez,et al. The Quantum Tetrahedron in 3 and 4 Dimensions , 1999, gr-qc/9903060.
[6] T. Thiemann. Modern Canonical Quantum General Relativity , 2007 .
[7] Vincenzo Aquilanti,et al. 3nj-symbols and harmonic superposition coefficients: an icosahedral abacus , 2001 .
[8] H. Weyl. Quantenmechanik und Gruppentheorie , 1927 .
[9] Voros. Wentzel-Kramers-Brillouin method in the Bargmann representation. , 1989, Physical review. A, General physics.
[10] The multiple sum formulas for 12j coefficients of SU(2) and uq(2) , 1999, math/9912142.
[11] Michael Stone,et al. The Semiclassical propagator for spin coherent states , 2000 .
[12] Shlomo Sternberg,et al. Geometric quantization and multiplicities of group representations , 1982 .
[13] D. Varshalovich,et al. Quantum Theory of Angular Momentum , 1988 .
[14] Vincenzo Aquilanti,et al. The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. , 2006, The Journal of chemical physics.
[15] Littlejohn,et al. Internal or shape coordinates in the n-body problem. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[16] L. Freidel,et al. On the semiclassical limit of 4d spin foam models , 2008, 0809.2280.
[17] C. M. Steele,et al. Asymptotics of relativistic spin networks , 2002, gr-qc/0209023.
[18] Robert G. Littlejohn,et al. Semiclassical structure of trace formulas , 1990 .
[19] Quasiclassical asymptotic behavior for Wigner's 3j symbols , 1978 .
[20] R. Gurău,et al. The Ponzano–Regge Asymptotic of the 6j Symbol: An Elementary Proof , 2008, 0808.3533.
[21] R. Littlejohn,et al. Uniform semiclassical approximation for the Wigner 6j-symbol in terms of rotation matrices. , 2009, The journal of physical chemistry. A.
[22] Carlo Rovelli. Quantum gravity , 2008, Scholarpedia.
[23] R. Littlejohn. The semiclassical evolution of wave packets , 1986 .
[24] Carlo Rovelli,et al. Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.
[25] An invitation to loop quantum gravity , 2004, hep-th/0408048.
[26] Edmund Taylor Whittaker,et al. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .
[27] D. Mackenzie,et al. Lagrangian Manifolds and the Maslov Operator , 1990 .
[28] U. Fano,et al. Graphical analysis of angular momentum for collision products , 1998 .
[29] The classical evaluation of relativistic spin networks , 1998, math/9803063.
[30] André Martinez,et al. An Introduction to Semiclassical and Microlocal Analysis , 2002 .
[31] Sóstenes Lins,et al. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134) , 1994 .
[32] D. Allen-Booth,et al. Classical Mechanics 2nd edn , 1974 .
[33] Vincenzo Aquilanti,et al. Exact Computation and Asymptotic Approximations of 6j Symbols: Illustration of Their Semiclassical Limits , 2010 .
[34] A. M. Almeida. The Weyl representation in classical and quantum mechanics , 1998 .
[35] Leboeuf,et al. Semiclassical approximations in the coherent-state representation. , 1989, Physical review. A, General physics.
[36] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[37] Jean-Marc Lévy-Leblond,et al. Symmetrical Coupling of Three Angular Momenta , 1965 .
[38] M. Kapovich,et al. The symplectic geometry of polygons in Euclidean space , 1996 .
[39] Vincenzo Aquilanti,et al. Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials: a recursive algorithm , 2001 .
[40] Justin Roberts. Classical 6j-symbols and the tetrahedron , 1998 .
[41] L. Crane,et al. Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.
[42] Vincenzo Aquilanti,et al. Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics: Hyperquantization algorithm , 2003 .
[43] M. Berry. Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[44] Klaus Schulten,et al. Exact recursive evaluation of 3j- and 6j-coefficients for quantum- mechanical coupling of angular momenta , 1975 .
[45] D. Mattis. Quantum Theory of Angular Momentum , 1981 .
[46] John C. Baez. Spin network states in gauge theory , 1994 .
[47] Vladimir Turaev,et al. State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .
[48] Quantum states of elementary three-geometry , 2001, gr-qc/0112043.
[49] J. Barrett,et al. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .
[50] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[51] M. Gutzwiller,et al. Periodic Orbits and Classical Quantization Conditions , 1971 .
[52] C. Rovelli,et al. A semiclassical tetrahedron , 2006, gr-qc/0606074.
[53] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[54] Vincenzo Aquilanti,et al. ANGULAR AND HYPERANGULAR MOMENTUM COUPLING COEFFICIENTS AS HAHN POLYNOMIALS , 1995 .
[55] L. Freidel,et al. Asymptotics of 6j and 10j symbols , 2002, hep-th/0209134.
[56] M. Rasetti,et al. Computing Spin networks , 2004, quant-ph/0410105.
[57] Richard Cushman,et al. Global Aspects of Classical Integrable Systems , 2004 .
[58] Y. Weissman. Semiclassical approximation in the coherent states representation , 1982 .
[59] R. Littlejohn,et al. Gauge fields in the separation of rotations and internal motions in the n-body problem , 1997 .
[60] M. Gutzwiller,et al. Energy Spectrum According to Classical Mechanics , 1970 .
[61] T. Regge. General relativity without coordinates , 1961 .
[62] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[63] Ingvar Lindgren,et al. Atomic Many-Body Theory , 1982 .
[64] Asymptotics of 10j symbols , 2002, gr-qc/0208010.
[65] P. Wormer,et al. Angular Momentum Diagrams , 2006 .
[66] Donald E. Neville,et al. A Technique for Solving Recurrence Relations Approximately and Its Application to the 3‐J and 6‐J Symbols , 1971 .
[67] Eugenio Bianchi,et al. Discreteness of the volume of space from Bohr-Sommerfeld quantization. , 2011, Physical review letters.
[68] James D. Louck,et al. The Racah-Wigner algebra in quantum theory , 1981 .
[69] Rovelli,et al. Spin networks and quantum gravity. , 1995, Physical review. D, Particles and fields.
[70] Tullio Regge,et al. Discrete structures in gravity , 2000 .
[71] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[72] Donald E. Neville. Volume operator for spin networks with planar or cylindrical symmetry , 2006 .
[73] A. Kirillov. Elements of the theory of representations , 1976 .
[74] M. Kapovich,et al. On the moduli space of polygons in the Euclidean plane , 1995 .
[75] William H. Miller,et al. Classical‐Limit Quantum Mechanics and the Theory of Molecular Collisions , 2007 .
[76] Shlomo Sternberg,et al. Geometric Asymptotics, Revised edition , 1977 .
[77] Jerrold E. Marsden,et al. Review: Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, and Nolan R. Wallach, Symplectic geometry and Fourier analysis , 1979 .
[78] S. Carlip. Quantum Gravity in 2+1 Dimensions , 1998 .
[79] A. Kirillov. Lectures on the Orbit Method , 2004 .
[80] R. Veen,et al. Asymptotics of quantum spin networks , 2010 .
[81] B. K. Jennings,et al. Wigner's function and other distribution functions in mock phase spaces , 1984 .
[82] A. R. Edmonds. Angular Momentum in Quantum Mechanics , 1957 .
[83] Asymptotics of the Wigner 9j symbol , 2009, 0912.5384.
[84] Vincenzo Aquilanti,et al. Semiclassical analysis of Wigner 3j-symbol , 2007, quant-ph/0703104.
[85] Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners , 2006, hep-th/0601129.