Semiclassical mechanics of the Wigner 6j-symbol

The semiclassical mechanics of the Wigner 6j-symbol is examined from the standpoint of WKB theory for multidimensional, integrable systems to explore the geometrical issues surrounding the Ponzano?Regge formula. The relations among the methods of Roberts and others for deriving the Ponzano?Regge formula are discussed, and a new approach, based on the recoupling of four angular momenta, is presented. A generalization of the Yutsis type of spin network is developed for this purpose. Special attention is devoted to symplectic reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich and Millson) and the reduction of Poisson bracket expressions for semiclassical amplitudes. General principles for the semiclassical study of arbitrary spin networks are laid down; some of these were used in our recent derivation of the asymptotic formula for the Wigner 9j-symbol.

[1]  V. Bargmann,et al.  On the Representations of the Rotation Group , 1962 .

[2]  Topological lattice models in four-dimensions , 1992, hep-th/9205090.

[3]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .

[4]  Klaus Schulten,et al.  Semiclassical approximations to 3j- and 6j-coefficients for quantum­ mechanical coupling of angular momenta An inverse problem in statistical mechanics Direct determination of the Iwasawa decomposition for noncompact , 1975 .

[5]  J. Baez,et al.  The Quantum Tetrahedron in 3 and 4 Dimensions , 1999, gr-qc/9903060.

[6]  T. Thiemann Modern Canonical Quantum General Relativity , 2007 .

[7]  Vincenzo Aquilanti,et al.  3nj-symbols and harmonic superposition coefficients: an icosahedral abacus , 2001 .

[8]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[9]  Voros Wentzel-Kramers-Brillouin method in the Bargmann representation. , 1989, Physical review. A, General physics.

[10]  The multiple sum formulas for 12j coefficients of SU(2) and uq(2) , 1999, math/9912142.

[11]  Michael Stone,et al.  The Semiclassical propagator for spin coherent states , 2000 .

[12]  Shlomo Sternberg,et al.  Geometric quantization and multiplicities of group representations , 1982 .

[13]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[14]  Vincenzo Aquilanti,et al.  The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. , 2006, The Journal of chemical physics.

[15]  Littlejohn,et al.  Internal or shape coordinates in the n-body problem. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  L. Freidel,et al.  On the semiclassical limit of 4d spin foam models , 2008, 0809.2280.

[17]  C. M. Steele,et al.  Asymptotics of relativistic spin networks , 2002, gr-qc/0209023.

[18]  Robert G. Littlejohn,et al.  Semiclassical structure of trace formulas , 1990 .

[19]  Quasiclassical asymptotic behavior for Wigner's 3j symbols , 1978 .

[20]  R. Gurău,et al.  The Ponzano–Regge Asymptotic of the 6j Symbol: An Elementary Proof , 2008, 0808.3533.

[21]  R. Littlejohn,et al.  Uniform semiclassical approximation for the Wigner 6j-symbol in terms of rotation matrices. , 2009, The journal of physical chemistry. A.

[22]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[23]  R. Littlejohn The semiclassical evolution of wave packets , 1986 .

[24]  Carlo Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[25]  An invitation to loop quantum gravity , 2004, hep-th/0408048.

[26]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[27]  D. Mackenzie,et al.  Lagrangian Manifolds and the Maslov Operator , 1990 .

[28]  U. Fano,et al.  Graphical analysis of angular momentum for collision products , 1998 .

[29]  The classical evaluation of relativistic spin networks , 1998, math/9803063.

[30]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[31]  Sóstenes Lins,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134) , 1994 .

[32]  D. Allen-Booth,et al.  Classical Mechanics 2nd edn , 1974 .

[33]  Vincenzo Aquilanti,et al.  Exact Computation and Asymptotic Approximations of 6j Symbols: Illustration of Their Semiclassical Limits , 2010 .

[34]  A. M. Almeida The Weyl representation in classical and quantum mechanics , 1998 .

[35]  Leboeuf,et al.  Semiclassical approximations in the coherent-state representation. , 1989, Physical review. A, General physics.

[36]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[37]  Jean-Marc Lévy-Leblond,et al.  Symmetrical Coupling of Three Angular Momenta , 1965 .

[38]  M. Kapovich,et al.  The symplectic geometry of polygons in Euclidean space , 1996 .

[39]  Vincenzo Aquilanti,et al.  Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials: a recursive algorithm , 2001 .

[40]  Justin Roberts Classical 6j-symbols and the tetrahedron , 1998 .

[41]  L. Crane,et al.  Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.

[42]  Vincenzo Aquilanti,et al.  Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics: Hyperquantization algorithm , 2003 .

[43]  M. Berry Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  Klaus Schulten,et al.  Exact recursive evaluation of 3j- and 6j-coefficients for quantum- mechanical coupling of angular momenta , 1975 .

[45]  D. Mattis Quantum Theory of Angular Momentum , 1981 .

[46]  John C. Baez Spin network states in gauge theory , 1994 .

[47]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[48]  Quantum states of elementary three-geometry , 2001, gr-qc/0112043.

[49]  J. Barrett,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[50]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[52]  C. Rovelli,et al.  A semiclassical tetrahedron , 2006, gr-qc/0606074.

[53]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[54]  Vincenzo Aquilanti,et al.  ANGULAR AND HYPERANGULAR MOMENTUM COUPLING COEFFICIENTS AS HAHN POLYNOMIALS , 1995 .

[55]  L. Freidel,et al.  Asymptotics of 6j and 10j symbols , 2002, hep-th/0209134.

[56]  M. Rasetti,et al.  Computing Spin networks , 2004, quant-ph/0410105.

[57]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[58]  Y. Weissman Semiclassical approximation in the coherent states representation , 1982 .

[59]  R. Littlejohn,et al.  Gauge fields in the separation of rotations and internal motions in the n-body problem , 1997 .

[60]  M. Gutzwiller,et al.  Energy Spectrum According to Classical Mechanics , 1970 .

[61]  T. Regge General relativity without coordinates , 1961 .

[62]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[64]  Asymptotics of 10j symbols , 2002, gr-qc/0208010.

[65]  P. Wormer,et al.  Angular Momentum Diagrams , 2006 .

[66]  Donald E. Neville,et al.  A Technique for Solving Recurrence Relations Approximately and Its Application to the 3‐J and 6‐J Symbols , 1971 .

[67]  Eugenio Bianchi,et al.  Discreteness of the volume of space from Bohr-Sommerfeld quantization. , 2011, Physical review letters.

[68]  James D. Louck,et al.  The Racah-Wigner algebra in quantum theory , 1981 .

[69]  Rovelli,et al.  Spin networks and quantum gravity. , 1995, Physical review. D, Particles and fields.

[70]  Tullio Regge,et al.  Discrete structures in gravity , 2000 .

[71]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[72]  Donald E. Neville Volume operator for spin networks with planar or cylindrical symmetry , 2006 .

[73]  A. Kirillov Elements of the theory of representations , 1976 .

[74]  M. Kapovich,et al.  On the moduli space of polygons in the Euclidean plane , 1995 .

[75]  William H. Miller,et al.  Classical‐Limit Quantum Mechanics and the Theory of Molecular Collisions , 2007 .

[76]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[77]  Jerrold E. Marsden,et al.  Review: Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, and Nolan R. Wallach, Symplectic geometry and Fourier analysis , 1979 .

[78]  S. Carlip Quantum Gravity in 2+1 Dimensions , 1998 .

[79]  A. Kirillov Lectures on the Orbit Method , 2004 .

[80]  R. Veen,et al.  Asymptotics of quantum spin networks , 2010 .

[81]  B. K. Jennings,et al.  Wigner's function and other distribution functions in mock phase spaces , 1984 .

[82]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[83]  Asymptotics of the Wigner 9j symbol , 2009, 0912.5384.

[84]  Vincenzo Aquilanti,et al.  Semiclassical analysis of Wigner 3j-symbol , 2007, quant-ph/0703104.

[85]  Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners , 2006, hep-th/0601129.